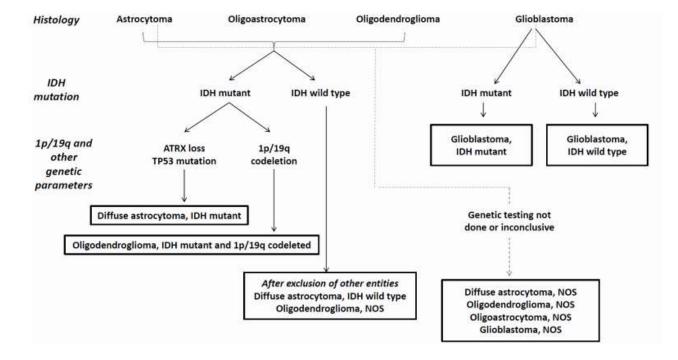
2019 NEWS IN ONCOLOGY

High Grade Gliomas: nuovi approcci terapeutici


Mario Caccese, MD

Dipartimento di Oncologia Clinica e Sperimentale Oncologia Medica 1 Istituto Oncologico Veneto-IRCCS Padova

High Grade Gliomas

Grading of CNS tumors Grade 2 Grade 3 Grade 4 Grade 1 · Low proliferative · Infiltrative, but low Histological evidence · Histological evidence proliferative potential of malignancy of malignancy potential (nuclear atypia and · Possibility of cure Chance to recur · Mitotically active increased mitotic after surgical and progress to Prone to necrosis activity) resection higher grades of Associated with malignancy rapid preoperative and postoperative disease progression and fatal outcomes

- Anaplastic Astrocytoma / Anaplastic Oligodendroglioma (III)
- Glioblastoma (IV)

Are we going to get out of the tunnel?

Topics

Glioblastoma

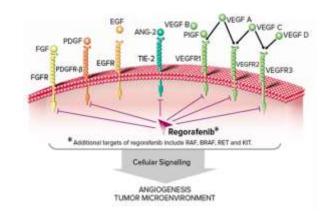
- ✓ REGOMA (regorafenib in recurrent GBM)
- ✓ **INTELLANCE 2** (depatuxizumab-M in recurrent GBM, EGFR ampl)

Anaplastic Gliomas

- ✓ **CATNON trial** (anaplastic glioma without 1p19q codel)
- ✓ STELLAR (anaplastic astrocytoma ongoing)

Precision Medicine

- Larotrectinib
- Entrectinib
- Vemurafenib


Immunotherapy

- Checkpoint inhibitors
- MMRd

THE LANCET Oncology

Regoratenib compared with Iomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial

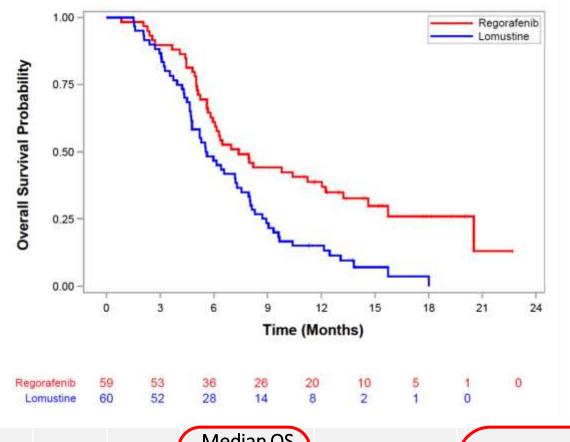
Giuseppe Lombardi, Gian Luca De Salvo, Alba Ariela Brandes, Marica Eoli, Roberta Rudà, Marina Faedi, Ivan Lolli, Andrea Pace, Bruno Daniele, Francesco Pasqualetti, Simona Rizzato, Luisa Bellu, Ardi Pambuku, Miriam Farina, Giovanna Magni, Stefano Indraccolo, Marina Paola Gardiman, Riccardo Soffietti, Vittorina Zagonel

REGOMA: study design

A randomized, multicenter, controlled open-label phase II clinical trial

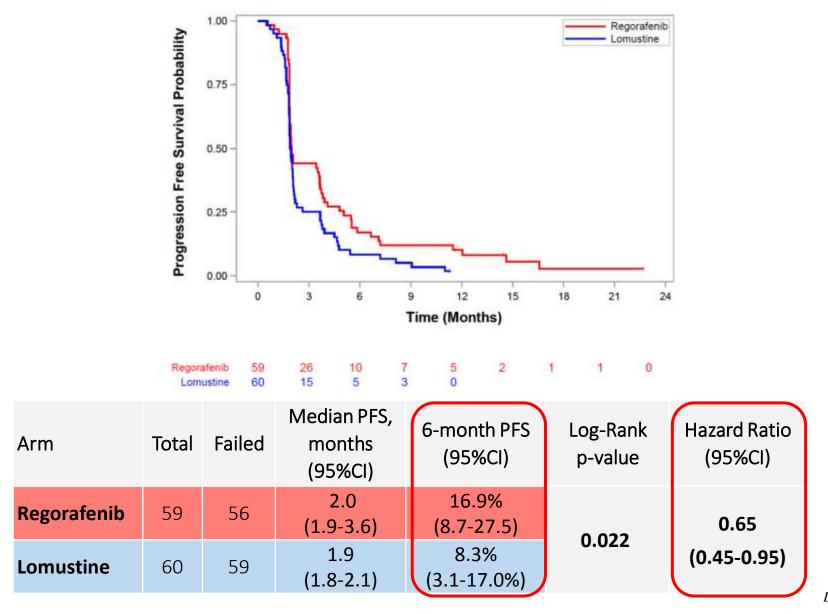
rGB after RT/TMZ (Stupp protocol)

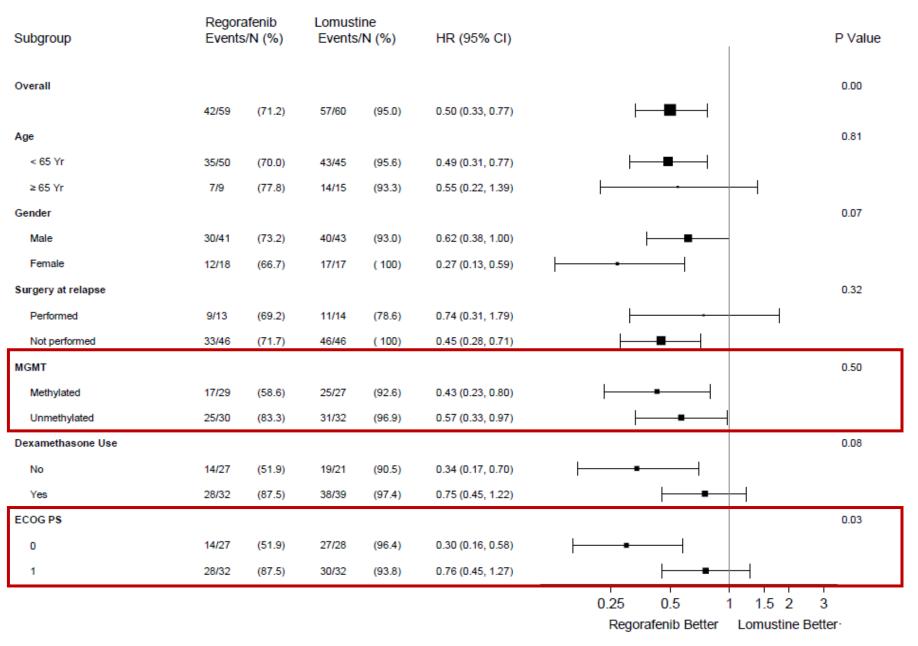
- PD by RANO criteria at least 12 weeks after completion of radiotherapy, unless the recurrence is outside the radiation field or has been histologically documented
- At least 1 bi-dimensionally measurable target lesion with 1 diameter of at least 10mm
- Histologically confirmed glioblastoma (GB)
- ECOG PS 0-1 (KPS≥70)



- Stratification factors: center and surgery at recurrence
- Study location: 10 centers in Italy

119 randomized patients from November 2015 to February 2017


	Regorafenib	Lomustine
Patients	59	60
Median age (range)	54.8 <i>(24.8-76.1)</i>	58.9 <i>(27.1-77.7)</i>
Gender male female	41 <i>(69.5%)</i> 18 <i>(30.5%)</i>	43 <i>(71.7%)</i> 17 <i>(28.3%)</i>
ECOG PS 0 1	27 <i>(45.8%)</i> 32 <i>(54.2%)</i>	28 <i>(46.7%)</i> 32 <i>(53.3%)</i>
Surgery at recurrence	13 (22.0%)	14 (23.3%)
Steroids at baseline	31 (52.5%)	37 <i>(61.7%)</i>
MGMT at diagnosis methylated unmethylated	59 (100%) 28 <i>(47.5%)</i> 31 <i>(52.5%)</i>	59 (98%) 26 <i>(44.1%)</i> 33 <i>(55.9%)</i>
IDH1 at diagnosis mutated wild type	44 (74.5%) 2 (4.5%) 42 (95.5%)	38 (63.3%) 0 (0%) 38 (100%)


Overall Survival

Arm	Total	Failed	Median OS months (95%CI)	12-month OS (95%CI)	Log-Rank p-value	Hazard Ratio (95% CI)
Regorafenib	59	42	7.4 (5.8-12.0)	38.9% (26.6-61.0)	0.0000	0.50
Lomustine	60	57	5.6 (4.7-7.3)	15.0% (7.4-25.1)	0.0009	(0.33-0.75)

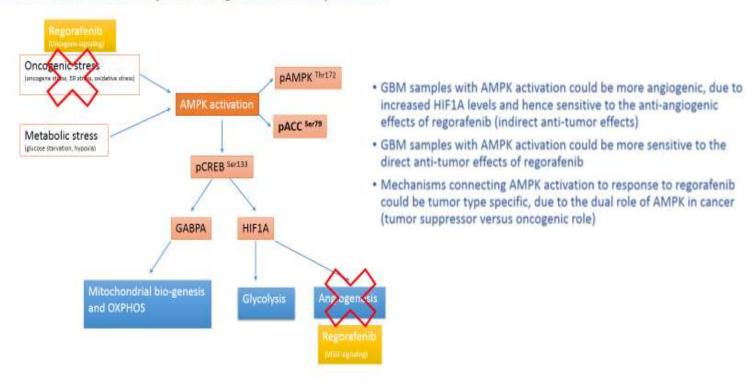
Progression Free Survival

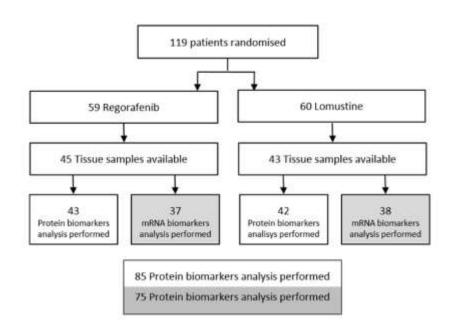
^{*} P-Value is the test of interaction between treatment and each subgroup unadjusted for multiplicit

Response Rates

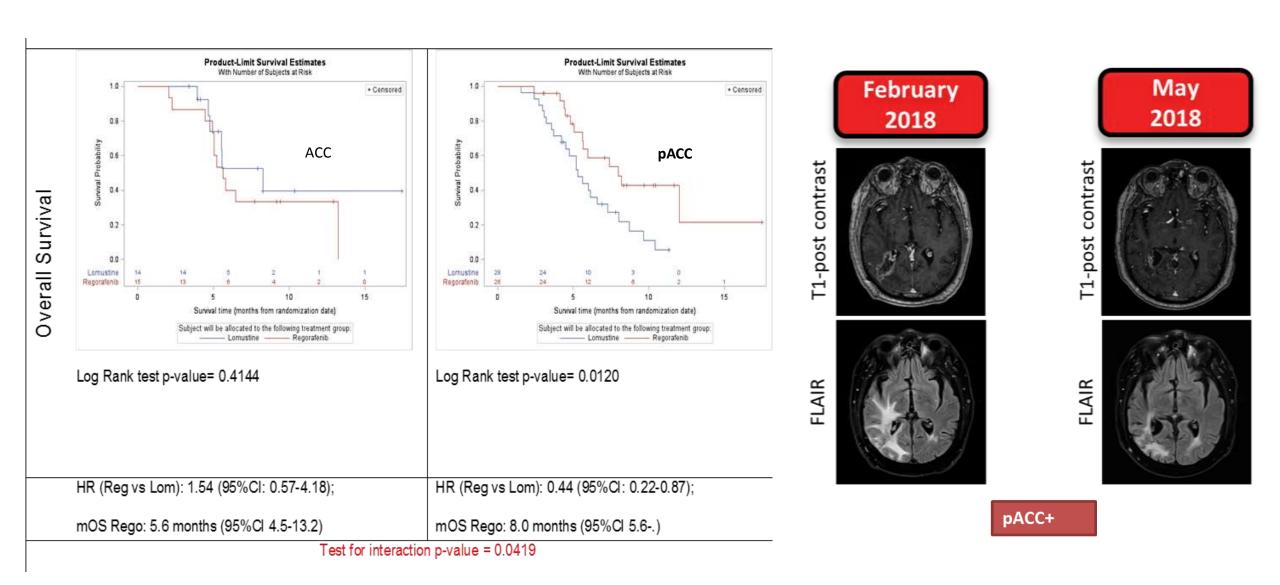
	Regorafenib	Lomustine
Complete Response	1.7%	1.8%
Partial Response	3.4%	1.8%
Objective Response Rate	5.1%	3.3%
Stable Disease	39%	17.5%
Disease Control Rate	44.1%	21.1%
Progressive Disease	55.9%	78.9%

Chi-square test p-value=0.0059

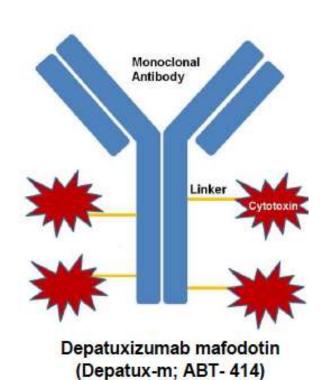

Safety

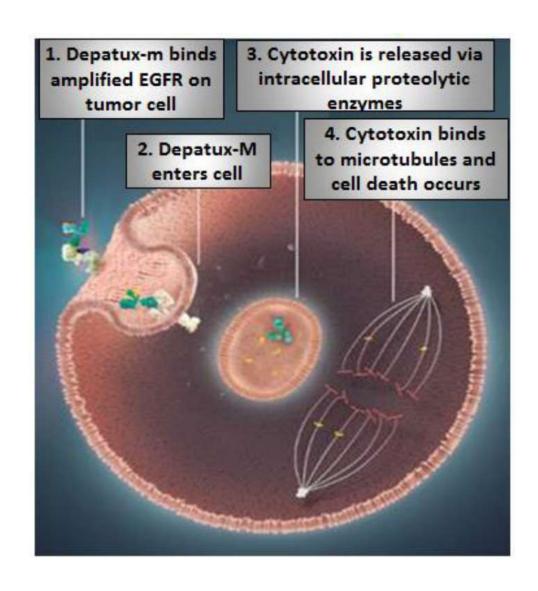

Treatment Related Adverse Event (grade 3-4)	Regorafenib	Lomustine
At least one event	33 (56%)	24 (40.0%)
Laboratory abnormalities		
Lymphopenia	3 (5.1%)	6 (10.0%)
Thrombocytopenia	1 (1.7%)	8 (13.3%)
Neutropenia		7 (11.7%)
Increased Lipase	6 (10.2%)	1 (1.7%)
Hyperbilirubinemia	6 (10.2%)	
Hypertransaminasemia	2 (3.4%)	2 (3.3%)
GGT increase	1 (1.7%)	2 (3.3%)
Leucopenia	3.00	2 (3.3%)
Serum amylase increase	2 (3.4%)	-
Hypertriglyceridemia	2 (3.4%)	(
Hypokalemia	1 (1.7%)	1.5
Clinical Adverse Event		
Hand-foot skin reaction	6 (10.2%)	8#4
Fatigue	2 (3.4%)	1 (1.7%)
Rash or desquamation	3 (5.1%)	(*)
Constipation	2 (3.4%)	(#)
Hypertension	1 (1.7%)	: -
Dry skin/skin alteration	1 (1.7%)	(¥)
Diarrhea	1 (1.7%)	: *

- Drug-related adverse events led to dose reductions in 17% and 18% of patients treated with regorafenib and lomustine, respectively
- No treatment-related death was reported

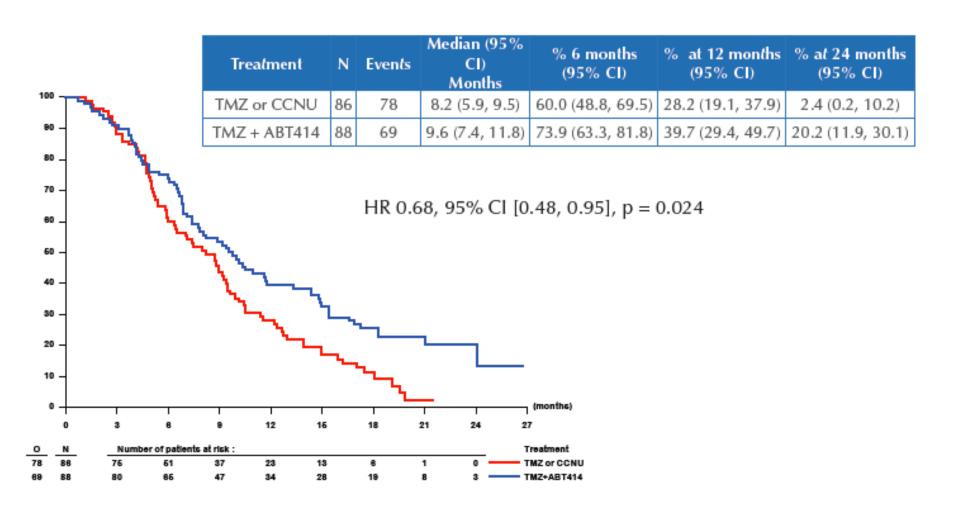

Biomarkers for predicting survival?

AMPK activation and response to regorafenib in relapsed GBM





Biomarkers for predicting survival?


Depatuxizumab-M (ABT414)

Intellance-2 (recurrent GBM)

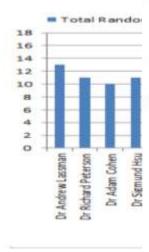
OVERALL SURVIVAL COMBINATION ARM: IMPROVED SURVIVAL

Intellance2 - Safety

Ocular toxicity (worst grade)	TMZ + Depatux-M n (%)	Depatux-M n (%)	Lomustine (n = 56) n (%)	TMZ (n = 21) n (%)
grade 0	13 (14.8)	22 (26.2)	51 (91.1)	21 (100.0)
grade 1	18 (20.5)	9 (10.7)	2 (3.6)	0
grade 2	29 (33.0)	32 (38.1)	3 (5.4)	0
grade 3	27 (30.7)	20 (23.8)	0 (0.0)	0
grade 4	1 (1.1)	1 (1.2)	0 (0.0)	0

Ocular toxicity is reversible if quickly recognized: careful monitoring

ABT- 414 (Depatux-M) – Newly Diagnosed Glioblastoma (M13-813)

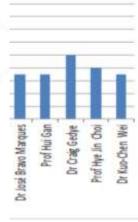

Patient population

Histologically confirmation de novo GBM (primation or gliosarcoma

Tumor demonstrate EGFR amplification

Chemoradiation therap within 7 weeks of diagnosis

Karnofsky performance ≥70



No Survival benefit at the interim analysis!

Endpoints

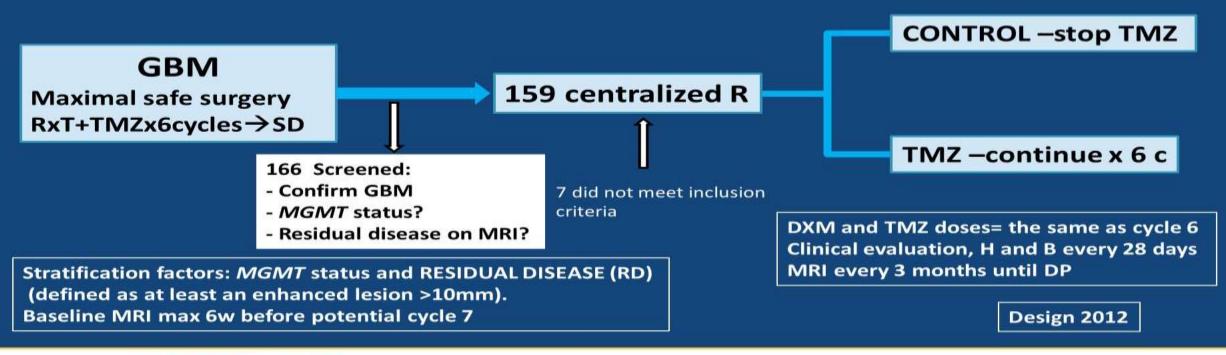
objectives ession-free survival (PFS) in s IIb II survival (OS) in phase III

ry objectives
n phase III
GFRvIII subgroup)
EGFRvIII subgroup)
to deterioration in:
Symptoms
Cognitive performance

Randomized clinical trial of continuation or non-continuation with 6 cycles of temozolomide after the first 6 cycles of standard first-line treatment in patients with glioblastoma. A Spanish Research Group in Neuro-oncology. Trial: GEINO 1401

Carmen Balana¹, Carlos Mesia Barroso², Sonia Del Barco Berron³, Estela Pineda Losada⁴, José Muñoz-Langa⁵, Anna Estival¹, Ramon De las Peñas⁶, Jose Fuster⁷, Miguel J. Gil Gil², L Miguel Navarro⁸, Miriam Alonso⁹, Ana Herrero¹⁰, María Ángeles Vaz Salgado¹¹, Sergi Peralta¹², Clara Olier¹³, Pedro Pérez-Segura¹⁴, Marta Covela Rúa¹⁵, Cristina Carrato¹⁶, Carolina Sanz ¹⁶, Juan Manuel Sepulveda-Sanchez¹⁷. On behalf of GEINO Group.

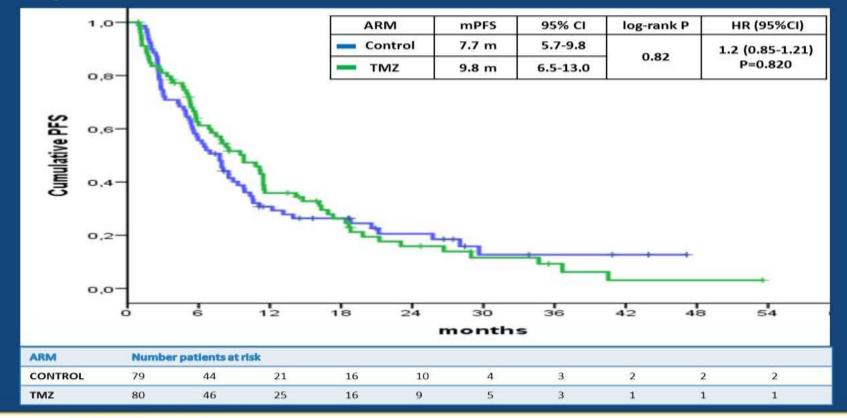
¹Institut Catala Oncologia Badalona/Barcelona; ²Institut Català d'Oncologia Hospital Duran i Reynals, L'Hospitalet de Llobregat/Barcelona; ³Institut Català d'Oncologia, Girona; ⁴Hospital Clinic, Barcelona; ⁵Hospital Universitario La Fe, Valencia; ⁶ Hospital Provincial de Castellon; ⁷Hospital Son Espases, Palma De Mallorca; ⁸Complejo Asistencial Universitario de Salamanca; ⁹Hospital Universitario Virgen del Rocio, Sevilla; ¹⁰Hospital Miguel Servet, Zaragoza; ¹¹Hospital Ramon y Cajal, Madrid; ¹²Hospital Sant Joan de Reus, Tarragona; ¹³Fundación Alcorcón, Madrid; ¹⁴Hospital San Carlos, Madrid; ¹⁵Hospital Lucus Augusti, Lugo; ¹⁶Hospital Germans Trias i Pujol, Badalona/Barcelona; ¹⁷Hospital 12 de Octubre, Madrid.



Trial design

GEINO 1401. Multi-academic-center, prospective, grant-supported

PRESENTED AT:


#ASCO19
Slides are the property of the author, permission required for recase.

PRESENTED BY:

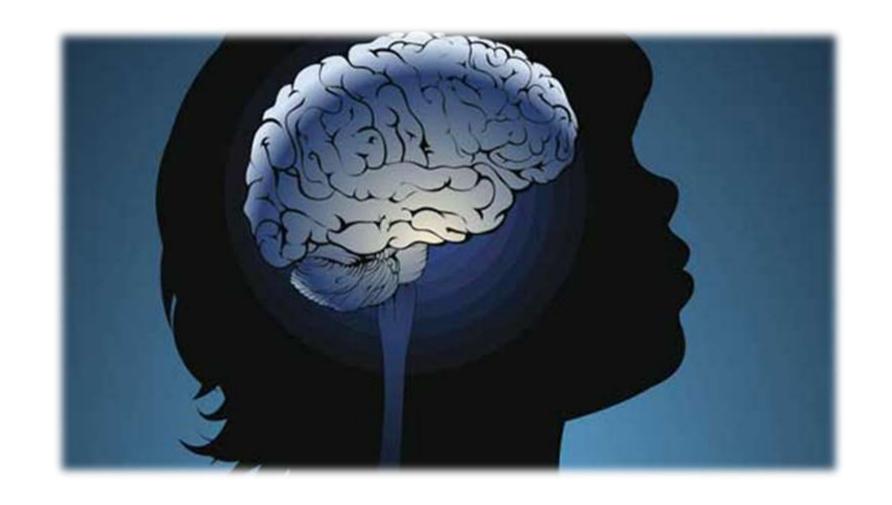
Carmen Balana

PFS by treatment arm

From inclusion

PRESENTED AT:

#ASCO19
Slides are the property of the author, permission required for reuse.


PRESENTED BY: Carmen Balana

Conclusions

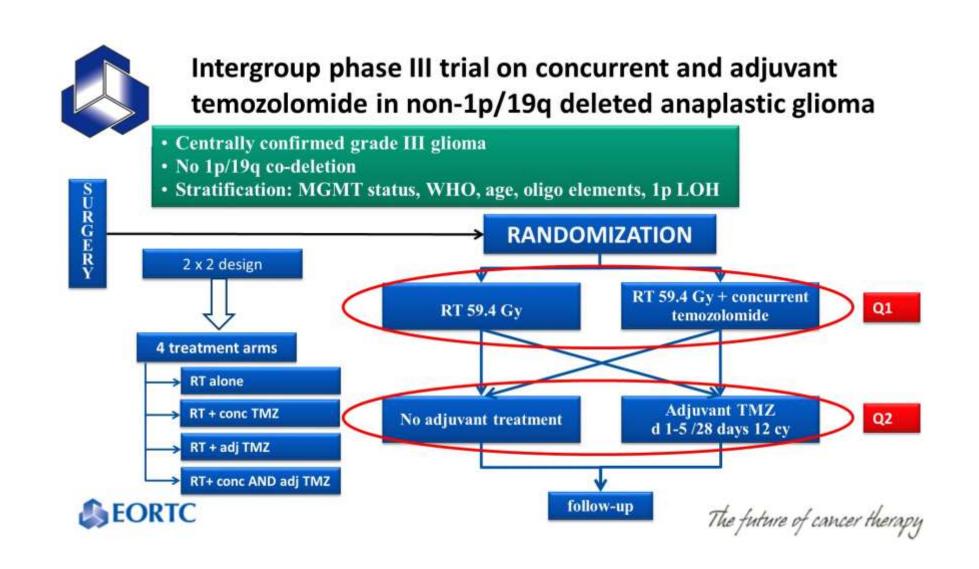
- This is the only successful prospective randomized trial comparing 6 to 12 cycles of adjuvant TMZ in GBM.
- We did not detect significant differences either in 6m-PFS or median PFS.
- Limitation: the study was not comparative.
 - BUT: it took 4 years for 20 centers to screen 166 patients with SD after the first 6 cycles.
 - In theory, other statistical designs may be possible but they are surely not practically feasible.
- We conclude that patients who stop TMZ after 6 cycles can have long periods of stability without treatment, thereby avoiding added toxicity and the extra cost of further cycles of TMZ.
- Studies of TERT promoter mutations, proteins related to TMZ resistance, subgroup outcomes, and final OS are ongoing.

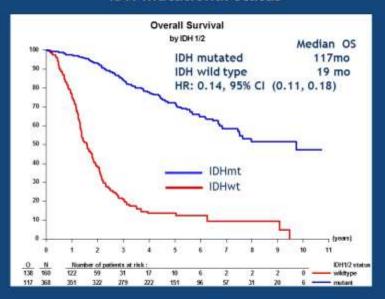
Anaplastic Gliomas

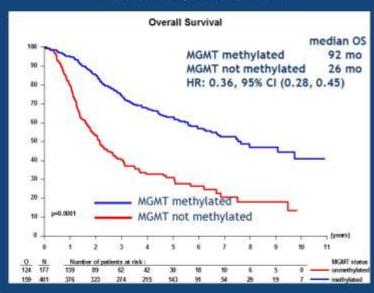
Second interim and 1st molecular analysis of the EORTC randomized phase III intergroup CATNON trial on concurrent and adjuvant temozolomide in anaplastic glioma without 1p/19q codeletion

M J van den Bent, S Erridge, M A Vogelbaum, AK Nowak, M Sanson, A A Brandes, W Wick, P M Clement, J F Baurain, W Mason, H Wheeler, M Weller, K Aldape, P Wesseling, J M Kros, C M S Tesileanu, V Golfinopoulos, T Gorlia, B G Baumert, P French

on behalf of the EORTC Brain Tumor Group and partners







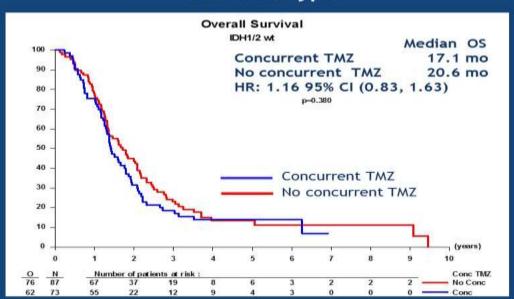
Impact of IDH, MGMT promoter on Overall Survival

IDH mutational status

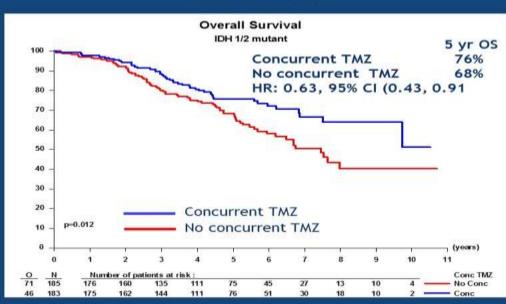
MGTM methylation status

> IDH mutational status stronger correlation with outcome than MGMT promoter methylation status

#ASCO19


States are the property of the eather, permittains organized for respec

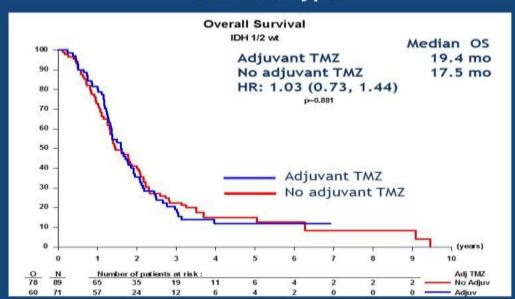
PRESENTED BY: M I van den bent



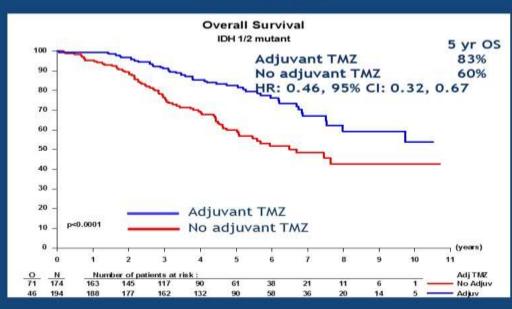
Concurrent temozolomide in IDHwt and IDHmt anaplastic astrocytoma

IDH wild type

IDH mutant

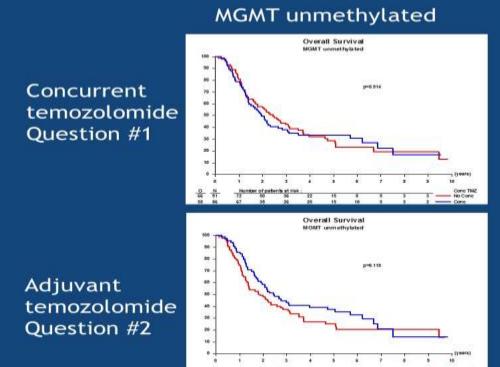


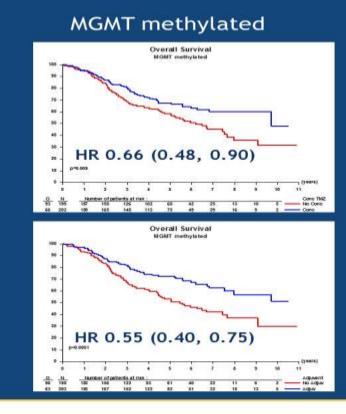
> Concurrent temozolomide improves outcome in IDH mutant anaplastic astrocytoma



Adjuvant temozolomide in IDHwt and IDHmt anaplastic astrocytoma

IDH wild type


IDH mutant



> Adjuvant temozolomide improves outcome in IDH mutant anaplastic astrocytoma

Effect of MGMT promoter status determined with methylation array

#ASCO19

Slides are the property of the author, permission required for reuse.

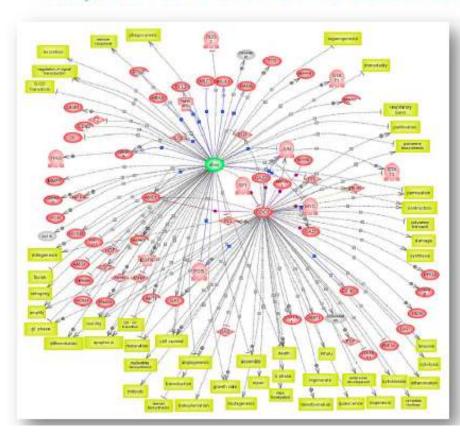
PRESENTED BY: M J van den Bent

Conclusions CATNON trial at ASCO 2019

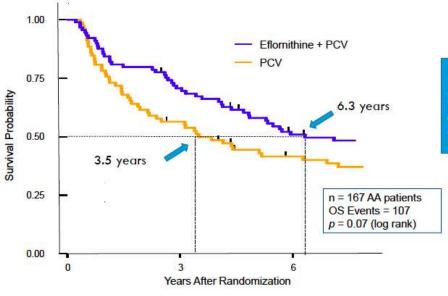
- In the entire study population, concurrent temozolomide during radiotherapy did not improve outcome
- 70% of the patients had an IDH mutated tumor, 70% of tumors showed MGMT promoter methylation
 - CATNON now to be analysed according to the WHO 2016 glioma classification
- Anaplastic astrocytoma, IDHmt benefit from adjuvant and concurrent temozolomide
 - Added value concurrent temozolomide if temozolomide is also given adjuvant appears small, but limited numbers still prevent firm conclusions
- No benefit of concurrent, adjuvant temozolomide in anaplastic astrocytoma, IDHwt
 - MGMT analysis to be reported

#ASCO19


Slides are the property of the author



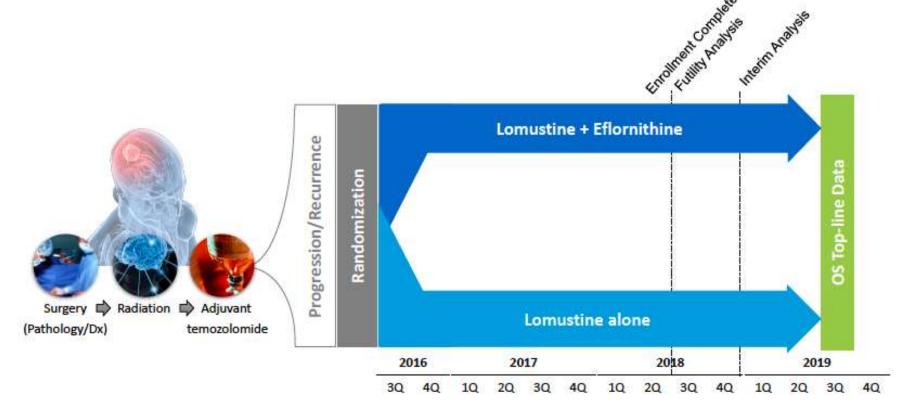
Eflornithine Effect on Polyamine Metabolism



Importance of ODC as a Cancer and Glioma Target

- Constitutive elevation of ODC:
 - Associated with oncogenesis
 - Maintenance of transformed phenotype
 - ODC levels increase with malignancy grade for adenocarcinoma, glioma, and melanoma
- Proto-oncogene ras and myc downstream pathways control
 ODC transcription, translation and dysregulation
- Inhibition of ODC:
 - Reverts transformation of cells and reduces tumor growth
 - Cell cycle G1 arrest and accumulation of p21 and p27 CDK inhibitors and may reduce mutation rates leading to grade increase
 - Inhibits tumor cell invasion

Eflornithine Phase 3 Study in AG Final OS Results in AA Patients


For AA patients receiving up to 12 months of eflornithine-PCV, mOS improved 2.8 years

Eflornithine Phase 3 Study in AG Toxicity

n = 228	Toxicity Grade	Eflornithine + PCV	PCV	Delta	<i>p</i> -value
Anemia	3 & 4	8.6%	1.7%	6.9%	NS
Diarrhea	3	6.8%	0.0%	6.8%	p=0.013
Neutropenia	3 & 4	49.6%	46.1%	3.5%	NS
Leukopenia	3 & 4	39.3%	33.9%	5.4%	NS
Nausea/vomiting	3 & 4	16.3%	13.0%	3.3%	NS
Ototoxicity	3	1.7%	0.0%	1.7%	NS
Skin	3	6.8%	6.1%	0.7%	NS
Thrombocytopenia	3 & 4	33.3%	21.7%	11.6%	NS

Study Design Eflornithine to Treat Recurrent AA Patients

Precision Medicine

Activity of Larotrectinib in TRK Fusion Cancer Patients with Brain Metastases or Primary Central Nervous System Tumors

Alexander Drilon,¹ Steven G. DuBois,² Anna F. Farago,³ Birgit Geoerger,⁴ Juneko E. Grilley-Olson,⁵ David S. Hong,⁶ Davendra Sohal,⁷ Cornelis M. van Tilburg,⁸ David S. Ziegler,⁹ Nora C. Ku,¹⁰ Michael C. Cox,¹⁰ Shivani Nanda,¹¹ Barrett H. Childs,¹¹ Francois Doz¹²

1. Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; 2. Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; 3. Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; 4. Gustave Roussy, Department of Pediatric and Adolescent Oncology, Université Paris-Sud, Université Paris-Sud, Université Paris-Saclay, Villejuif, France; 5. University of North Carolina Hospitals, Chapel Hill, NC, USA; 5. The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 7. Cleveland Clinic, Cleveland, OH, USA; 8. Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Research Center (DKFZ), Heidelberg, Germany; 9. Sydney Children's Hospital, Randwick, Australia; 10. Loxo Oncology, Inc., South San Francisco, CA, USA; 11. Bayer HealthCare Pharmaceuticals, Inc., Whippany, NJ, USA; 12. Institut Curie, University Paris Descartes, Paris, France.

Presented By Alexander Drilon at 2019 ASCO Annual Meeting

Methods

Adult phase I trial (NCT02576431)

- Age ≥18 years
- · Advanced solid tumours

Pediatric phase I/II trial (SCOUT, NCT02637687)

- · Age 1 month to 21 years
- Locally advanced or metastatic solid tumours or CNS tumours

Adult/adolescent phase II basket trial (NAVIGATE, NCT02576431)

- . Age ≥12 years
- · Advanced solid tumours
- TRK fusion cancer

24 patients with intracranial disease

18 patients with primary CNS tumors*

6 patients with non-primary CNS tumors and brain metastases[†]

- CNS eligibility criteria
 - Asymptomatic and stable brain metastases
 - Primary CNS tumors[§]
- TRK fusion status determined by local molecular profiling

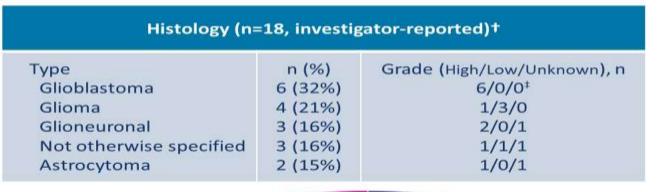
Endpoints

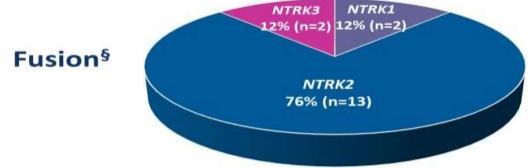
- Objective response rate
- Intracranial response[‡]

- Objective responses
 - RECIST 1.1 or RANO
 - Serial MRI/CT brain
 - required with baseline intracranial disease
- Initial larotrectinib dose
 - 100 mg or 100 mg/m² (maximum of 100 mg) BID

*Data cutoff: February 19, 2019. †Data cutoff date July 30, 2018. ‡In tumor for patients with brain metastases; not a formal endpoint. §SCOUT trial: neurologically stable and on stable dose of steroids. RANO, Response Assessment in Neuro-Oncology; RECIST, Response Evaluation Criteria In Solid Tumors.

PRESENTED AT: 2019 ASCO


n=1


n = 12

n = 11

Clinicopathologic Features: Primary CNS Tumors

Characteristic	n=18
Gender, n (%) Female Male	10 (55%) 8 (45%)
Age, median (range) Pediatric* Adult	10 years (1–79) 14 (78%) 4 (22%)
Prior therapies, n (%) Systemic therapy Surgery or radiotherapy	15 (83%) 13 (72%)
Number of prior systemic therapies, median (range)	1 (0-6)

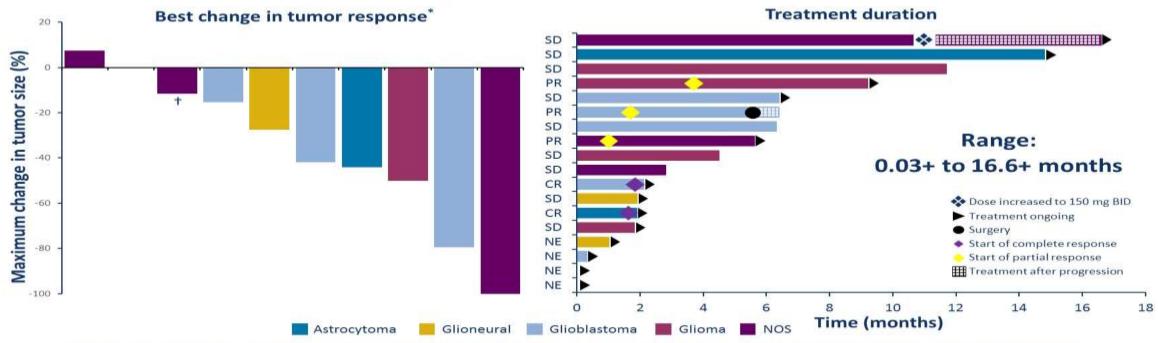
*Pediatric age range 1–16 years; adult age range 31–79 years. †Histology based on initial CRF entries. For select tumors, WHO grade, IDH mutation status, MGMT methylation status, and 1p/19q co-deletion status will be clarified in a future report. ‡3 cases were entered as "unknown grade"; however, these glioblastomas were assumed to be grade III. §One patient not determined.

2019 ASCO

PRESENTED AT:

#ASCO19
Slides are the property of the author, permission required for reuse.

PRESENTED BY: ALEXANDER DRILON


Investigator-Assessed Efficacy of Larotrectinib in TRK Fusion-Positive Primary CNS Tumors

	n=14 evaluable patients
Objective response rate	36% (95% CI: 13-65)
Best overall response*, n (%) Complete response Partial response Stable disease Progressive disease	2 (14%) [‡] 3 (21%) [‡] 9 (64%) 0 (0%)
Disease control rate ≥ 16 weeks§, n (%)	11 (79%)
Disease control rate ≥ 24 weeks§, n (%)	10 (71%)
Progression-free survival, median**	11.0 months (95% CI: 2.8, NE)

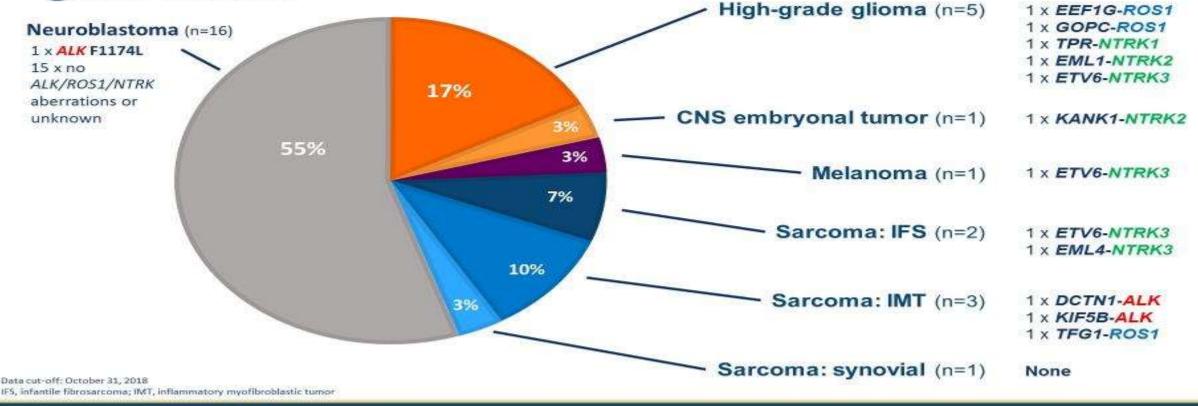
Data cutoff date February 19, 2019. *Investigator assessment based on RANO or RECIST 1.1. †Pending confirmation. ‡All responses were seen in pediatric cases (ORR 45%, n=5/11). §Disease control rate = complete response + partial response + stable disease. **In 18 patients with median follow-up of 4.4 months. CI, confidence interval; RANO, Response Assessment in Neuro-Oncology.

10

Larotrectinib in TRK Fusion-Positive Primary CNS Tumors: Response and Treatment Duration

Data cutoff date February 19, 2019. Disease assessments were performed by investigators. *Tumor responses in patients with measurable disease and tumor values recorded at data cutoff, based on RANO sum of products of diameters, unless noted otherwise. †Based on RECIST 1.1 sum of longest diameter. CR, complete response; NE, not evaluable; PR, partial response; RANO, Response Assessment in Neuro-Oncology; RECIST, Response Evaluation Criteria In Solid Tumors; SD, stable disease.

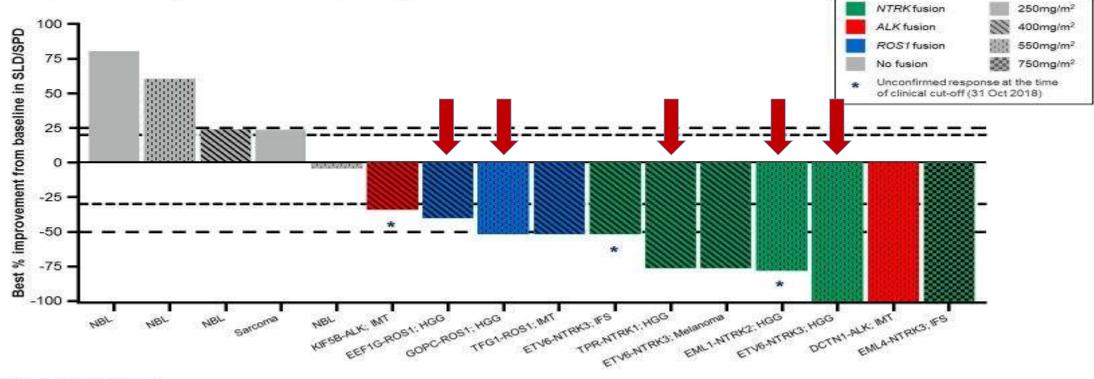
12


Phase 1/1B trial to assess the activity of entrectinib in children and adolescents with recurrent or refractory solid tumors including central nervous system (CNS) tumors

Authors: <u>Giles W. Robinson</u>¹, Amar Gajjar¹, Karen Gauvain², Ellen M. Basu³, Margaret E. Macy⁴, Luke Maese⁵, Amit J. Sabnis⁶, Jennifer Foster⁷, Suzanne Shusterman⁸, Janet Yoon⁹, Brian Weiss¹⁰, Mohamed S. Abdelbaki¹¹, Mufiza Farid-Kapadia¹², Georgina Meneses-Lorente¹³, Alison Cardenas¹⁴, Katherine E. Hutchinson¹⁴, Guillaume Bergthold¹⁵, Edna Chow Maneval¹⁶, Elizabeth Fox¹⁷, Ami V. Desai¹⁸

1. St. Jude Children's Research Hospital, Memphis, TN; 2. Washington University School of Medicine, St. Louis, MO; 3. Memorial Sloan Kettering Cancer Center, New York, NY; 4. Children's Hospital Colorado, Aurora, CO; 5. University of Utah/Huntsman Cancer Institute, Primary Children's Hospital, Salt Lake City, UT 6. University of California San Francisco, Benioff Children's Hospital, San Francisco, CA; 7. Texas Children's Hospital, Houston, TX; 8. Dana Farber Cancer Institute, Boston Children's Cancer and Blood Disorders Center, Boston, MA; 9. Rady Children's Hospital, San Diego, CA; 10. Cincinnati Children's Hospital Medical Center, Cincinnati, OH; 11. Nationwide Children's Hospital, Columbus, OH; 12. F. Hoffmann-La Roche Limited, Mississauga, ON, Canada; 13. Roche Products Limited, Welwyn Garden City, UK; 14. Genentech, South San Francisco, CA; 15. F. Hoffmann-La Roche, Basel, Switzerland; 16. Ignyta, Inc, San Diego, CA; 17. Children's Hospital of Philadelphia, Philadelphia, PA; 18. University of Chicago Medical Center, Chicago, IL, USA

Baseline characteristics by tumor type and target gene fusion

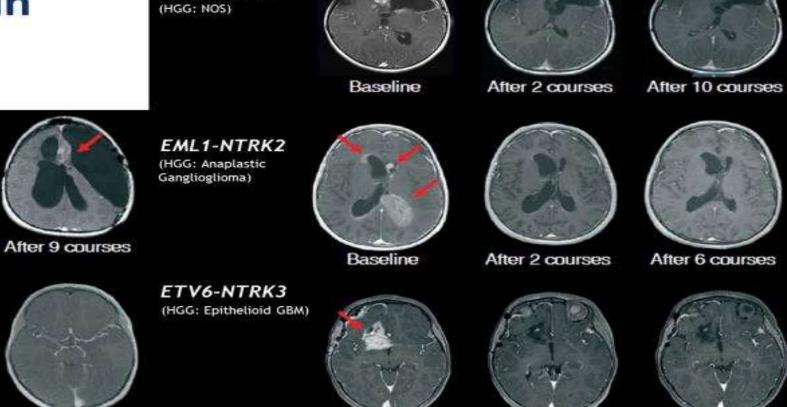

PRESENTED AT: 2019 ASCO

#ASCO19

When are the property of the outlook
permission required for mose.

PRESENTED BY: Gites W. Robinson

Entrectinib in pediatric solid tumors: individual patient responses


Data cut-off: October 31, 2018. Investigator assessed Includes only patients with measureable disease at baseline and tumor assessment

PRESENTED AT: 2019 ASCO

#ASCO19
littles are the property of the outbox,
permission modeled for mose.

PRESENTED BY: Gites W. Robinson

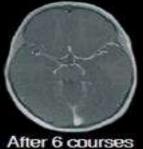
Measureable and durable responses in **CNS tumors**

(HGG: DMG with H3K27M)

GOPC-ROS1

EEF1G-ROS1

anaplastic features)

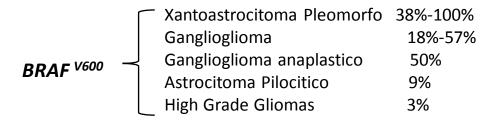

(HGG: DIA with

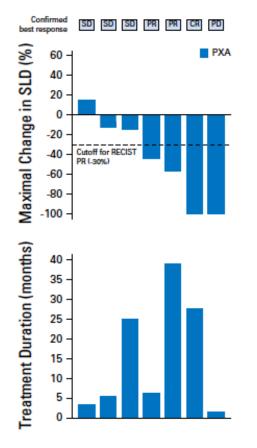
Baseline

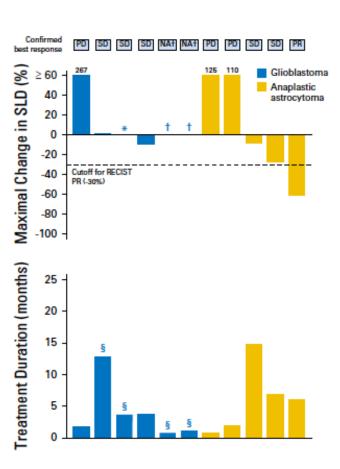
After 2 courses

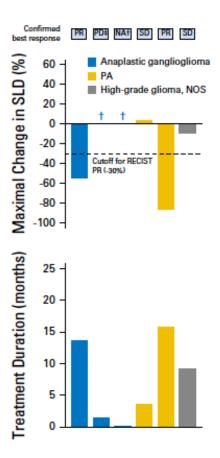
After 8 courses

PRESENTED AT: 2019 ASCO

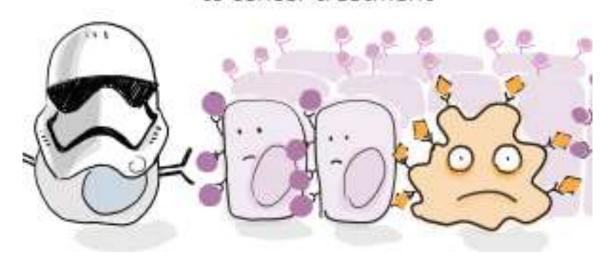

#ASCO19


PRESENTED BY: Gites W. Robinson


TPR-NTRK1

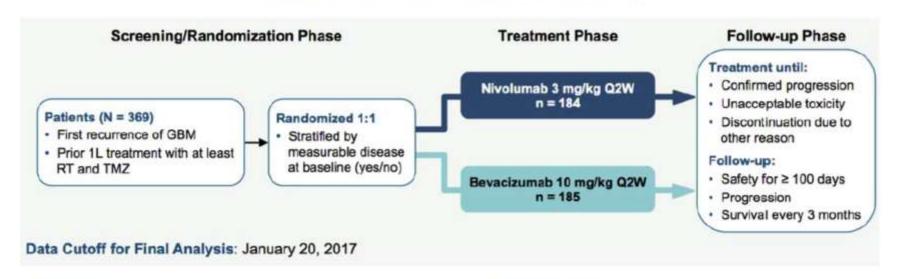

BRAF Inhibition in *BRAF*^{V600}-Mutant Gliomas: Results From the VE-BASKET Study

Thomas Kaley, Mehdi Touat, Vivek Subbiah, Antoine Hollebecque, Jordi Rodon, A. Craig Lockhart, Vicki Keedy,



AWAKEN THE FORCE WITHIN

Immunotherapy brings a new hope to cancer treatment



Immunotherapy

Nivolumab

CheckMate 143 Cohort 2 Study Design

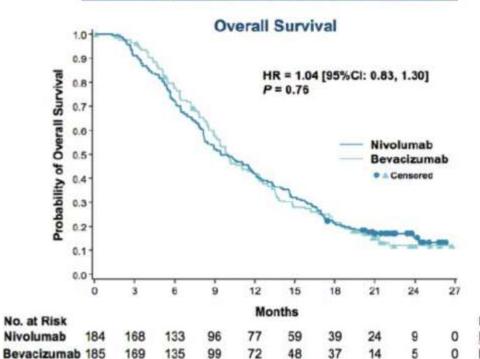
Nivolumab vs Bevacizumab in Recurrent GBM

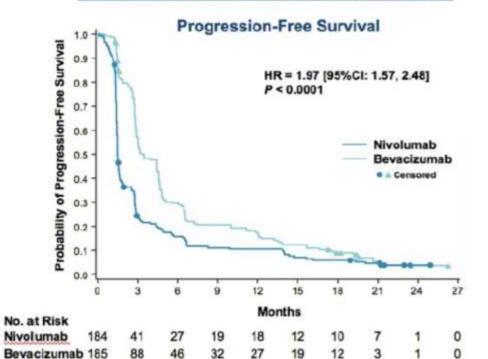
Endpoints:

- · Primary: OS in all randomized patients
- Secondary: investigator-assessed ORR and PFS (RANO);
 12-month OS rate
- Other key endpoints: safety; biomarkers

Assessments:

- Tumor: contrast-enhanced MRI Q6W until week 13, then Q8W (RANO)
- Safety: CTCAE v4.0


1L, first line; CTCAE, Common Terminology Criteria for Adverse Events; MRI, magnetic resonance imaging; ORR; objective response rate; PFS, progression-free survival; Q2W, every 2 weeks; Q6W, every 6 weeks; Q8W, every 8 weeks; RANO, Radiologic Assessment in Neuro-Oncology criteria.

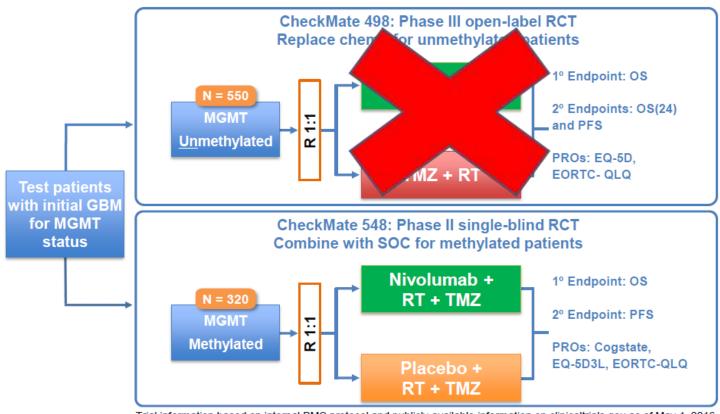

Overall Survival and Progression-Free Survival

Nivolumab vs Bevacizumab in Recurrent GBM

	Events, n	Median OS [95% CI], months	12-Month OS Rate [95% CI], months
Nivolumab	154	9.8 [8.2, 11.8]	41.8 [34.7, 48.8]
Bevacizumab	147	10.0 [9.0, 11.8]	42.0 [34.6, 49.3]

	Events,	Median PFS [95% CI], months	12-Month PFS Rate [95% CI], months
Nivolumab	171	1.5 [1.5, 1.6]	10.5 [6.5, 15.5]
Bevacizumab	146	3.5 [2.9, 4.6]	17.4 [11.9, 23.7]

Response per Investigator Assessment (RANO)


Nivolumab vs bevacizumab in recurrent GBM

	Nivolumab n = 153ª	Bevacizumab n = 156ª
ORR, n (%) [95% CI]	12 (7.8) [4.1, 13.3]	36 (23.1) [16.7, 30.5]
BOR, n (%)	0.44.0)	4 (2.0)
CR PR	2 (1.3) 10 (6.5)	4 (2.6) 32 (20.5)
SD PD	33 (21.6) 107 (69.9)	73 (46.8) 26 (16.7)
Unable to determine	1 (0.7)	21 (13.5)
Not treated Discontinued early due to toxicity	1 (0.7) 0	16 (10.3) 3 (1.9)
Other	0	2 (1.3)
Median TTR (range), months	3.0 (1.4–12.0)	1.5 (1.2–6.5)
Median DOR (range), months	11.1 (0.6–18.7)	5.3 (3.1–24.9)
PFS rate [95% CI], %	45 7 [40 0 24 5]	20.0 [22.7, 20.0]
6-months 12-months	15.7 [10.8, 21.5] 10.5 [6.5, 15.5]	29.6 [22.7, 36.9] 17.4 [11.9, 23.7]

BOR, best overall response; CR, complete response; DOR, duration of response; PD, progressive disease; PR, partial response; SD, stable disease; TTR, time to response. aPatients evaluable for response.

Nivolumab

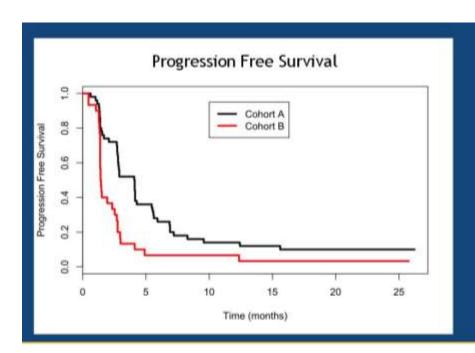
CheckMate 498 and CheckMate 548: Phase III Study Designs for Newly Diagnosed GBM

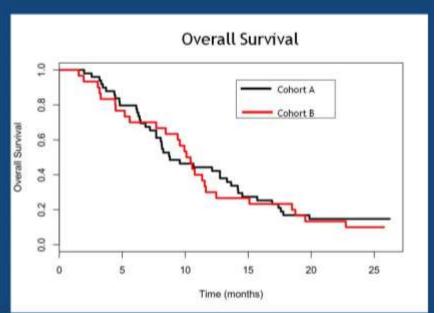
Trial information based on internal BMS protocol and publicly available information on clinicaltrials.gov as of May 1, 2016.

Pembrolizumab

Phase II study of pembrolizumab or pembrolizumab plus bevacizumab in recurrent glioblastoma (rGBM)

David A. Reardon, Lakshmi Nayak, M.D., Katherine Peters, Jennifer Clarke, Justin T. Jordan, 4 John de Groot, Leia Nghiemphu, Thomas Kaley, Howard Colman, Sarah C. Gaffey, Victoria Caruso, Myriam Bednarek Debruyne, Chinmay Bhavsar, Annette M. Molinaro, Timothy R. Smith, Mariano Severgnini, and Patrick Y. Wen1


¹Dana-Farber Cancer Institute and Harvard University School of Medicine, Boston, MA; ²Duke University Medical Center, Durham, NC; 3University of California, San Francisco, San Francisco, CA; 4Massachusetts General Hospital, Boston, MA; 5M.D. Anderson Cancer Center, Houston, TX; 6University of California, Los Angeles, Los Angeles, CA; 7Memorial Sloan Kettering Cancer Center, New York City, NY: 8Huntsman Cancer Institute, Salt Lake City, UT: 9Brigham and Women's Hospital, Boston, MA


PRESENTED BY: David A. Reardon, M.D.

Contact: david reardon@dfci.harvard.edu

Supported by: The Ben and Catherine Ivy Foundation

	Cohort A (n=50)	Cohort B (n=30)
Median follow-up (months)	25.2	25.8
Median progression-free survival (months)	4.09 (95% CI: 2.79, 5.52)	1.43 (95% CI: 1.38, 2.70)
Progression-free survival at 6 months (%)	26.0 (95% CI: 16.3, 41.5)	6.7 (95% CI: 1.8, 2.5)
Median overall survival	8.78 (95% CI: 7.69, 14.17)	10.26 (95% CI: 8.45, 12.46)

...*Why?*

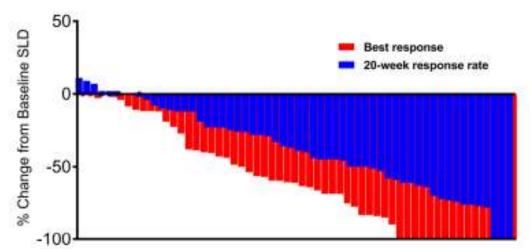
"Corticosteroids or non-Corticosteroids, that is the question..."

Dexamethasone Use at Baseline: Poorer Survival With Nivolumab CheckMate 143

Patie	ents, n	Upotrotified UD (05% CI)	
Nivolumab	Bevacizumab	Unstratified HR [95% CI]	
184	185	0.99 [0.79, 1.24]	
43	42	0.92 [0.56, 1.51]	
59	67	1.34 [0.92, 1.96]	
80	76	0.88 [0.62, 1.24]	
73	79	1.41 [1.01, 1.97]	
111	106	0.84 [0.62, 1.24]	
108	139	1.19 [0.90, 1.56]	
76	46	0 1 2 3	
48	35	1.35 [0.83, 2.19]	
107	114	0.97 [0.72, 1.30]	
	Nivolumab 184 43 59 80 73 111 108 76	184 185 43 42 59 67 80 76 73 79 111 106 108 76 139 46	

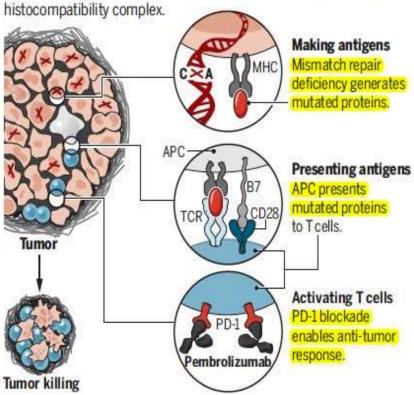
All we need is...BIOMARKERS

PD-L1 expression in Glioblastoma


	Newly Diagnosed Glioblastoma (n = 117)		Recurrent Glioblastoma (n = 18)	
	n	%	n	%
Diffuse/fibrillary PD-L1 expression				
None	18/117	15.4	5/18	27.8
≤25%	18/117	15.4	3/18	16.7
>25%, ≤50%	30/117	25.6	2/18	11.1
>50%, ≤75%	39/117	33.3	6/18	33.3
>75%	12/117	10.3	2/18	11.1
Membranous PD-L1 expression				
Positive (≥5% of tumor cells)	44/117	37.6	3/18	16.7
Negative (<5% of tumor cells)	73/117	62.4	15/18	83.3

Science

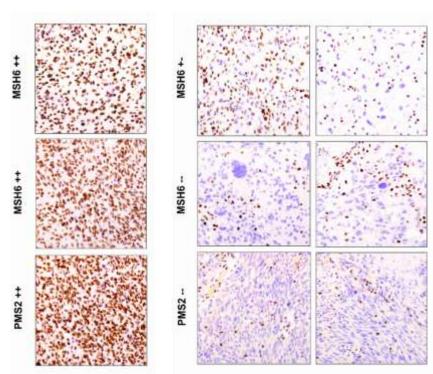
Cite as: D. T. Le et al., Science 10.1126/science.aan6733 (2017).


Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade

Dung T. Le, 1,2,3 Jennifer N. Durham, 1,2,3* Kellie N. Smith, 1,3* Hao Wang, 3* Bjarne R. Bartlett, 2,4* Laveet K. Aulakh, 2,4 Steve Lu, 2,4 Holly Kemberling, 3 Cara Wilt, 3 Brandon S. Luber, 3 Fay Wong, 2,4 Nilofer S. Azad, 1,3 Agnieszka A. Rucki, 1,3 Dan Laheru, 3 Ross Donehower, 3 Atif Zaheer, 5 George A. Fisher, 6 Todd S. Crocenzi, 7 James J. Lee, 8 Tim F. Greten, 9 Austin G. Duffy, 9 Kristen K. Ciombor, 10 Aleksandra D. Eyring, 11 Bao H. Lam, 11 Andrew Joe, 11 S. Peter Kang, 11 Matthias Holdhoff, 3 Ludmila Danilova, 1,3 Leslie Cope, 1,3 Christian Meyer, 3 Shibin Zhou, 1,3,4 Richard M. Goldberg, 12 Deborah K. Armstrong, 3 Katherine M. Bever, 3 Amanda N. Fader, 13 Janis Taube, 1,3 Franck Housseau, 1,3 David Spetzler, 14 Nianqing Xiao, 14 Drew M. Pardoll, 1,3 Nickolas Papadopoulos, 3,4 Kenneth W. Kinzler, 3,4 James R. Eshleman, 15 Bert

Mutations as antigens

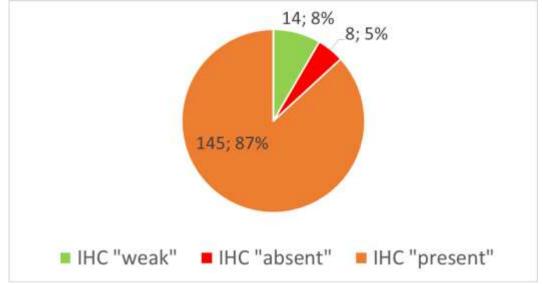
Mismatch repair deficiency in tumor cells can be used as a biomarker for immune checkpoint therapy. TCR, T cell receptor; MHC, major

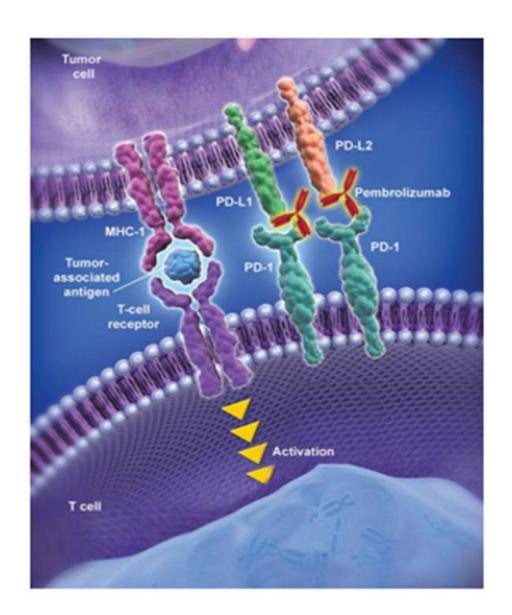


<u>Pembrolizumab</u> in recurrent high-grade <u>glioma</u> patients with mismatch repair deficiency: An observational study.

Giuseppe Lombardi, Mario Caccese, Matteo Simonelli, Matteo Fassan, Marta Padovan, Pasquale Persico, Luisa Bellu, Angelo Dipasquale, Marina Paola Gardiman, Stefano Indraccolo, Vittorina Zagonel;

Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; Humanitas University, Humanitas Clinical and Research Hospital-IRCCS, Pieve Emanuele, Italy; Department of Medicine (DIMED), Pathology Unit, University of Padua, Padova, Italy; Humanitas Clinical and Research Hospital-IRCCS, Rozzano, Italy; Radiotherapy Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; Unità Anatomia Patologica, Azienda-Università di Padova, Padua, Italy; Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy




	P	OR	95% CI
Anaplastic Astrocytoma vs Glioblastoma	0.01	3.8	1.3-11.1
Recurrence vs Diagnosis	0.008	3.9	1.5-10-1
Female Pts vs Male Pts	0.03	2.7	1.07-6.7
IDHmut vs IDHwt	0.03	3.3	1.1-9.8

Univariate Analysis

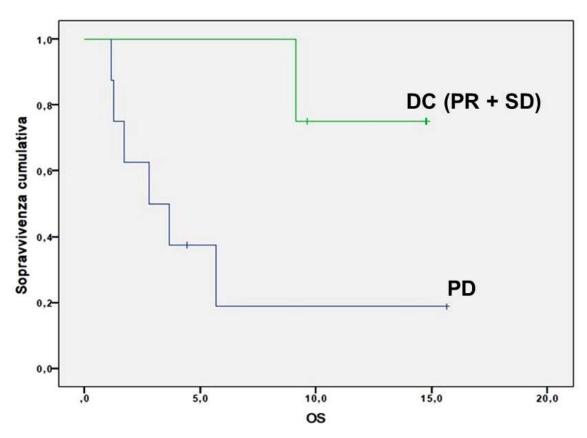
	P	OR	95% CI
Anaplastic Astrocytoma vs Glioblastoma	0.007	5.1	1.5 - 16.8
Recurrence vs Diagnosis	0.02	3.8	1.1 - 12.5

Multivariate Analysis - Logistic Regression

Pembrolizumab in recurrent high-grade glioma patients with mismatch repair deficiency: An observational study.

Giuseppe Lombardi, Mario Caccese, Matteo Simonelli, Matteo Fassan, Marta Padovan, Pasquale Persico, Luisa Bellu, Angelo Dipasquale, Marina Paola Gardiman, Stefano Indraccolo, Vittorina Zagonel:

Department of Oncology, Oncology 1, Veneto institute of Oncology IOV-IRCCS, Padua, Italy, Humanitas University, Humanitas Clinical and Research Hospital-IRCCS, Flew Emanuels, Italy, Department of Medicine (DIMEDI), Pathology Unit, University of Padua, Radova, Italy, Radova, Italy, Humanitas Clinical and Research Hospital-IRCCS, Rozrano, Italy, Radiotherapy Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy, Unità Anatomia Patologica, Asienda-Università di Padova, Padua, Italy, Immanology and Miolecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy


- Pembrolizumab in recurrent HGG
- ECOG PS 0-2
- Desametazone ≤4mg
- MMR HGG (IHC)

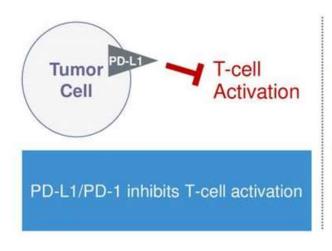
Baseline Patients Characteristics

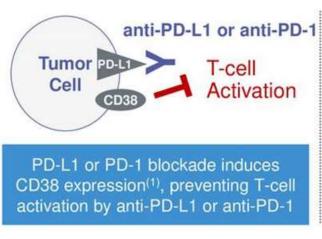
Characteristics	N (%)
Patients	12
Median age	44
Histology - Anaplastic Astrocytoma - Anaplastic ODG - Glioblastoma	5 (42) 1 (8) 6 (50)
MGMT methylation status - Metilated - Unmetilated	8/10 (80) 2/10 (20)
IDH - Mutated - Wild-Type	6/11 (55) 5/11 (45)
Median Previous CT lines	1 (range 1-5)
Previous RT	12 (100)

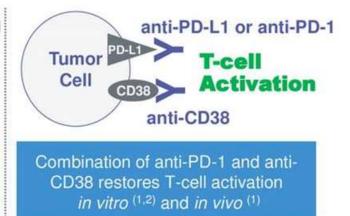
Characteristics	N (%)
Deficient protein in MMR	
- MSH2	6 (50)
- MSH6	9 (75)
- PMS2	2 (17)
- MLH1	2 (17)
Deficiency in MMR	
- Weak Signal	8 (67)
- Absent Signal	4 (33)
Median cycles of PEM	3.5 (range 1-22)
Median DEX (mg)	1.5 (range 0-4)

Results

Overall Survival according to response

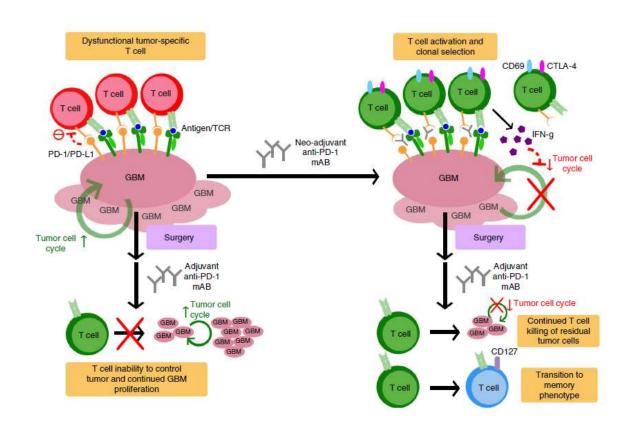

Response Rate according to R	RANO
criteria	

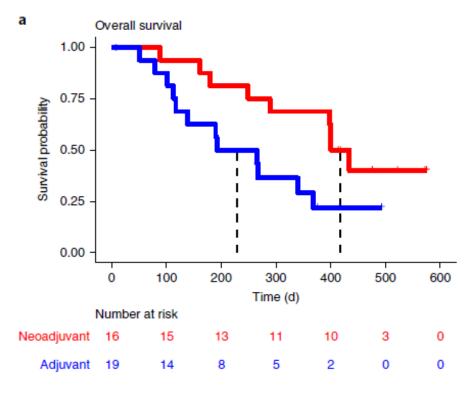

Disease Control Rate	33%
- Stable Disease (SD)	3/12
- Partial Response (PR)	1/12
Progressive Disease (PD)	67%
	(8/12)


A new Horizon...ACT15377: Atezolizumab + Isatuximab

Isatuximab Targets CD38: A Second Checkpoint Inhibitor

Anti-PD-1 in vivo resistance via CD38 upregulation on tumor cells is reversed by anti-CD38/anti-PD-1 combination⁽¹⁾





Neoadjuvant Pembrolizumab in recurrent GBM

nature redicine FOCUS | ARTICLES Mtps://toolorg/10.10388/s41591-018-0337-7

Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma

