

I PARP inibitori nella paziente con Carcinoma ovarico BRCA mutato e non mutato. Sono tutti uguali?

Giusy Scandurra

UOS Oncologia Medica

Dipartimento Materno Infantile
Ospedale Cannizzaro di Catania

Domande...

- Che cos'è un PARP inibitore? Perché funziona un PARP Inibitore?
- Quali sono i farmaci PARP inibitori?
- Indicazioni attuali e del nostro immediato futuro
- In che cosa si somigliano ed in che cosa si differenziano?
- Perché fallisce un PARP inibitore?
- ...Qual è il futuro dei PARP inibitori?

What is a PARP Inhibitor? How a PARP Inhibitor works?

Scusate....
ma per parlare di questo
concetto devo partire da
Adamo ed Eva..

DNA Repair

- DNA is damaged daily
- DNA repair maintains DNA integrity
- Presence of 2 DNA strands supports high-fidelity repair
- Complex process involving very large number of genes
- Multiple DNA repair processes repair different types of damage
- Cancer occurs as a consequence of inadequate DNA repair

ABCs of DNA Repair

Mehta A, Haber JE. Cold Spring Harbor Perspect Biol. 2014;6:a016428.

DNA Repair Defects in Cancer

- Common in cancer
- Defects found in multiple repair processes
- Commonly mutations
 - Loss of function of TP53 (guardian of the genome)
 - Loss of cell cycle inhibitors/checkpoints p15, p16, p21, p27, CHEK1, CHEK2
 - Mismatch repair defects: MSH2, MSH6, MLH1, PMS2, others
 - HR repair defects: BRCA2, BRCA1, ATM, PALB2, RAD51, others
 - Loss of DNA damage sensors

What is the function of BRCA 1 and BRCA 2?

- ✓ Tumor suppressor genes involved in DNA repair
- ✓ Autosomally transmitted (chromosomes 17 and 13)
- ✓ When mutated: higher incidence of hereditary breast and ovarian cancer (HBOC syndrome)

What is the function of BRCA 1 and BRCA 2?

HOMOLOGOUS RECOMBINATION

What is the function of BRCA 1 and BRCA 2?

Impairment of BRCA1 and BRCA2 function leads to DNA instability, telomere shortening and higher risk of endocrine related cancer (breast and ovary)

DNA Repair Defects: The Achilles' Heel in Cancer Cells

- Normal cells
 - Regular, complete repair processes
 - Easily repair minor defects
- Tumor cells
 - Highly defective repair
 - Minimal, but sufficient, repair capability
- Pharmacological inhibition of DNA repair is lethal to cancer cells, but spares normal cells

Synthetic Lethality

- Two genes are "synthetic lethal" if:
 - Mutation of either gene A or B alone is compatible with viability, but
 - Simultaneous mutation of both genes A and B causes death
- "Holy Grail" of cancer care: selective tumor cell kill, sparing normal cells

PARP and Synthetic Lethality

- PARP family^[a]
 - 17 members
 - PARP1, PARP2 recruit proteins for DNA resection, singlestrand formation, and initiation of HR
- PARP inhibitors have a synthetic lethal interaction with loss of HR DNA repair genes^[a-c]
 - BRCA1 and BRCA2 involved in high-fidelity HR

a. Riffell JL, et al. Nat Rev Drug Discov. 2012;11:923-936; b. Dietlein F, et al. Clin Cancer Res. 2014;20:5882-5887; c. Lupo B, et al. Biochim Biophys Acta. 2014;1846:201-215.

PARP Inhibition May Result in Tumor Cell Death via Multiple Pathways, in HRD Deficient and Platinum Sensitive Tumors

DSB = double-strand break; HR = homologous recombination; SSB = single-strand break.

Iglehart JD, Silver DP. N Engl J Med. 2009;361:189-191^[26]; Farmer H, et al. Nature. 2005;434:917-921^[23];

Bryant HE, et al. Nature. 2005;434:913-917^[24]; McCabe N, et al. Cancer Res. 2006;66:8109-8115.^[25]

Quali sono i farmaci PARP inibitori?

OLAPARIB, NIRAPARIB AND RUCAPARIB HIGHLY EFFECTIVE IN BRCA MUT

Olaparib gBRCA mut 19.3 vs 5.5 months (HR 0.27)

Niraparib *
gBRCA mut
21 vs 5.5 months (HR 0.27)

Rucaparib gBRCA mut 16.6vs 5.4 months (HR 0.27)

^{*} Central radiological review

Study Design: EMBRACA Primary Endpoint: PFS by Blinded Central Revenue Revenue

1-Year PFS 37% vs 20%

time: 11.2 months

Median follow-up

PARP Inhibitors

Based on "tumour synthetic lethality" targeting cells with homologous recombination deficiency (HRD) – is this a new treatment for BRCA mutation associated ovarian cancer?

Pre-clinical

Early Clinical Trials (Phase I, incl. IB) Randomised Clinical Trials (Phase II and III)

PARP: poly(ADP) ribose polymerase

Exquisite preclinical efficacy of PARPi

Phase I trial confirms excellent tolerance and expansion in 50 BRCA patients showed 46% response.

"this is nothing like chemotherapy

Randomised trial (maintenance therapy) showed marked PFS benefit

Farmer et al, Nature 2005

Fong P et al. N Engl J Med, 2009; 361, 123-134; Fong P et al. J Clin Oncol, 2010; 28, 2512-2519

Ledermann et al, NEJM 2012 366 1382-92

Study 19: Phase II trial design, endpoints and *BRCA* testing

N = 265

- 'Platinum-sensitive' recurrent high-grade serous ovarian cancer
- ≥2 prior regimens of platinum-based chemotherapy
- Complete or partial response to most recent platinum-based regimen

Primary endpoint:
Progression-free survival (PFS)
by RECIST 1.0

Secondary endpoints included: Overall survival (OS), safety and tolerability

Exploratory endpoints

Time to first subsequent therapy or death (TFST), time to second subsequent therapy or death (TSST)

- Previous local germline BRCA testing (case report forms)
- Retrospective germline BRCA testing or tumour BRCA testing

BRCAm: n=136

BRCAwt:* n=118

^{*}BRCAwt patients did not have a detected BRCAm or had a BRCAm of unknown significance bid, twice daily; BRCAwt, BRCA1/2 wild type; RECIST, Response Evaluation Criteria in Solid Tumors

Study 19: Progression free survival results

Long-term exposure to treatment

Median follow-up of 5.9 years: <u>15 patients (11%)</u> still receiving olaparib (8 BRCAm, 7 BRCAwt); one patient (<1%) still receiving placebo (BRCAm)

SOLO2/ENGOT-Ov21: study design

Patients

- BRCA1/2 mutation
- Platinum-sensitive relapsed ovarian cancer
- At least 2 prior lines of platinum therapy
- CR or PR to most recent platinum therapy

Sensitivity analysis: PFS by blinded independent central review (BICR)

- Key secondary endpoints:
 - Time to first subsequent therapy or death (TFST), time to second progression (PFS2), time to second subsequent therapy or death (TSST), overall survival (OS)
 - Safety, health-related quality of life (HRQoL*)

Demographic and baseline characteristics

Characteristic		Olaparib (n=196)	Placebo (n=99)
Age, median (range)		56 (28–83)	56 (39–78)
Primary tumor type, n (%)	Ovarian	162 (82.7)	86 (86.9)
	Fallopian tube or primary peritoneal	31 (15.8)	13 (13.1)
	Other/missing	3 (1.5)	0
Prior platinum regimens, n (%)	2 lines	110 (56.1)	62 (62.6)
	3 lines	60 (30.6)	20 (20.2)
	≥4 lines	25 (12.8)	17 (17.2)
Platinum-free interval, n (%)	6–12 months	79 (40.3)	40 (40.4)
	>12 months	117 (59.7)	59 (59.6)
Response to platinum therapy, n (%)	Complete response	91 (46.4)	47 (47.5)
	Partial response	105 (53.6)	52 (52.5)

PFS by investigator assessment

Median follow-up was 22.1 months in the olaparib group and 22.2 months for placebo

PFS sensitivity analysis using BICR

Subgroup analysis of PFS

Secondary efficacy endpoints

Olaparib in first line: SOLO-1 Phase III trial- BRCAm population only

First-line maintenance

SOLO-1 is the first Phase III trial to investigate maintenance therapy with a PARP inhibitor in newly diagnosed ovarian cancer

SOLO-1 is a global randomised multicentre placebo controlled Phase III study

- Germline or somatic BRCAm
- ECOG performance status 0–1
- Cytoreductive surgery*
- In clinical complete response or partial response after platinumbased chemotherapy

Olaparib 300 mg bid (N=260)

2:1 randomisation

Stratified by response to platinum-based chemotherapy

Placebo (N=131)

2 years' treatment if no evidence of disease

- Study treatment continued until disease progression
- Patients with no evidence of disease at 2 years stopped treatment
- Patients with a partial response at 2 years could continue treatment

Primary endpoint

 Investigator-assessed PFS (modified RECIST 1.1)

Secondary endpoints

- PFS using BICR
- PFS2
- Overall survival
- Time from randomisation to first subsequent therapy or death
- Time from randomisation to second subsequent therapy or death
- HRQoL (FACT-O TOI score)

^{*} Upfront or interval attempt at optimal cytoreductive surgery for stage III disease and either biopsy and/or upfront or interval cytoreductive surgery for stage IV disease

[•] BICR = blinded independent central review; ECOG = Eastern Cooperative Oncology Group; FACT-O = Functional Assessment of Cancer Therapy – Ovarian Cancer; FIGO = International Federation of Gynecology and Obstetrics; HRQoL = health-related quality of life; PFS = progression-free survival; PFS2 = time to second progression or death; RECIST = Response Evaluation Criteria in Solid Tumours; TOI = Trial Outcome Index; PARP = poly (ADP-ribose) polymerase; BRCAm = BRCA gene mutation

https://clinicaltrials.gov/ct2/show/NCT01844986 (accessed October 2018)

Baseline characteristics were well halanced between treatment groups

Characteristic	Olaparib (N=260)	Placebo (N=131)
Median age, years (range)	53.0 (29–82)	53.0 (31–84)
Response after platinum-based chemotherapy, N (%) Clinical complete response* Partial response [†]	213 (81.9) 47 (18.1)	107 (81.7) 24 (18.3)
ECOG performance status, N (%) 0 1 Missing	200 (76.9) 60 (23.1) 0	105 (80.2) 25 (19.1) 1 (0.8)
Primary tumour location, N (%) Ovary Fallopian tubes Primary peritoneal Other [‡]	220 (84.6) 22 (8.5) 15 (5.8) 3 (1.2)	113 (86.3) 11 (8.4) 7 (5.3)
FIGO stage, N (%)	220 (84.6) 18 (15.1)	105 (80.2) 26 (13.8)

^{• *}Clinical complete response was defined as no evidence of (RECIST) measurable or non-measurable disease on the post-treatment scan and a normal CA-125 level.

^{• †}Partial response was defined as a ≥30% reduction in tumour volume from the start to the end of chemotherapy or no evidence of disease on the post-treatment scan, but with a CA-125 level which had not decreased to within the normal range

^{• *}Other includes ovary, fallopian tube, peritoneum, and omentum (N=1), ovary and peritoneum (N=1) and tubo-ovary (N=1)

ECOG = Eastern Cooperative Oncology Group; FIGO = International Federation of Gynecology and Obstetrics

Moore K et al. N. Engl. J. Med. (2018) ePub ahead of print

Baseline characteristics were well balanced between treatment groups

Characteristic	Olaparib (N=260)	Placebo (N=131)
Baseline CA-125 level, N (%)		
≤ULN	247 (95.0)	123 (93.9)
>ULN	13 (5.0)	7 (5.3)
Missing	0	1 (0.8)
Histology, N (%)		
Serous	246 (94.6)	130 (99.2)
Endometrioid	9 (3.5)	0
Mixed serous/endometrioid	5 (1.9)	1 (0.8)
BRCA mutation,§ N (%)		
BRCA1	191 (73.5)	91 (69.5)
BRCA2	66 (25.4)	40 (30.5)
Both BRCA1 and BRCA2	3 (1.2)	0

^{• §}Myriad/BGI or locally reported; the five patients from China had germline *BRCA* mutation testing performed within China, using the BGI test. Central germline testing confirmed that 388/391 patients had a *BRCA1/2* mutation, 1 patient had a *BRCA* variant of uncertain significance, and 2 patients were *BRCA* wild-type. Foundation Medicine testing confirmed that the two germline *BRCA* wild-type patients had *somatic* BRCA mutations

[•] ULN = upper limit of normal per institutional standard.

[•] Moore K et al. N. Engl. J. Med. (2018) ePub ahead of print

PFS by investigator assessment

Events (%) [50.6% maturity]

Median PFS, months

Monthe	CINCA	randomization	•
MOHUIS	311100	I alluvillizativi	

260 240 229 221 212 201 194 184 172 149 138 133 111 88 45 36 4 3 0 0 0 131 118 103 82 65 56 53 47 41 39 38 31 28 22 6 5 1 0 0 0 0

No. at risk Olaparib

Placebo

CI, confidence interval; NR, not reached

Olaparib

(N=260)

102 (39.2)

NR

HR 0.30

95% CI 0.23, 0.41; P<0.0001

Placebo

(N=131)

96 (73.3)

13.8

Summary of efficacy endpoints

ORIGINAL ARTICLE

Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer

K. Moore, N. Colombo, G. Scambia, B.-G. Kim, A. Oaknin, M. Friedlander, A. Lisyanskaya, A. Floquet, A. Leary, G.S. Sonke, C. Gourley, S. Banerjee, A. Oza, A. González-Martin, C. Aghajanian, W. Bradley, C. Mathews, J. Liu, E.S. Lowe, R. Bloomfield, and P. DiSilvestro

ORIGINAL ARTICLE

Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer

M.R. Mirza, B.J. Monk, J. Herrstedt, A.M. Oza, S. Mahner, A. Redondo,
M. Fabbro, J.A. Ledermann, D. Lorusso, I. Vergote, N.E. Ben-Baruch,
C. Marth, R. Madry, R.D. Christensen, J.S. Berek, A. Dørum, A.V. Tinker,
A. du Bois, A. González-Martín, P. Follana, B. Benigno, P. Rosenberg, L. Gilbert,
B.J. Rimel, J. Buscema, J.P. Balser, S. Agarwal, and U.A. Matulonis,
for the ENGOT-OV16/NOVA Investigators*

ENGOT-OV16/NOVA TRIAL

Nova Trial and HRD

- OC is a genetically heterogeneous disease; BRCA1/2 deleterious mutations or chromosomal damage result in similar biology
- The myChoice® HRD test measures DNA damage
 - Telomeric allelic imbalance (TAI)
 - Large-scale state transitions (LST)
 - Loss of heterozygosity (LOH)
 - PARP inhibitors block DNA repair pathways in homologous recombination repair deficient (HRD) cells¹
 - Platinum sensitivity correlates with HRD, and platinum-sensitive tumors are more responsive to PARP-inhibitors than platinum-resistant tumors²⁻⁴

Sporadic Ovarian Cancer

Levine D. The Cancer Genome Atlas, 2011

ENGOT-OV16/ NOVA Phase III Trial

Patient Demographics & Baseline Characteristics

	gBRCAmut		Non-gB	RCAmut			
Characteristic	Niraparib (N=138)	Placebo (N=65)	Niraparib (N=234)	Placebo (N=116)			
Age - years	,	, ,		•			
Median (min, max)	57.0 (36, 83)	58.0 (38, 73)	63.0 (33, 84)	60.5 (34, 82)			
Region – n (%)							
USA and Canada	53 (38.4)	28 (43.1)	96 (41.0)	44 (37.9)			
Europe and Israel	85 (61.6)	37 (56.9)	138 (59.0)	72 (62.1)			
ECOG performance status – n (%)							
0	91 (65.9)	48 (73.8)	160 (68.4)	78 (67.2)			
1	47 (34.1)	17 (26.2)	74 (31.6)	38 (32.8)			
Primary tumor site – n (%)							
Ovarian	122 (88.4)	53 (81.5)	192 (82.1)	96 (82.8)			
Primary peritoneal	7 (5.1)	6 (9.2)	24 (10.3)	8 (6.9)			
Fallopian tube	9 (6.5)	6 (9.2)	18 (7.7)	11 (9.5)			
Lines of previous chemotherapy – n (%)							
2	70 (50.7)	30 (46.2)	155 (66.2)	77 (66.4)			
≥3	67 (48.6)	35 (53.8)	79 (33.8)	38 (32.8)			

^{*}One patient received one line of prior therapy.

Progression-free Survival: gBRCAmut

	PFS	Hazard	Pati with	of ents lout ession eath
Treatment	Median (95% CI) (Months)	Ratio (95% CI) p-value	12 mo	18 mo
Niraparib (N=138)	21.0 (12.9, NR)	0.27 (0.173,	62%	50%
Placebo (N=65)	5.5 (3.8, 7.2)	0.410) p<0.0001	16%	16%

PFS was analyzed using a 2-sided log-rank test using randomization stratification factors, and summarized using the Kaplan-Meier methodology. Hazard ratios with 2-sided 95% confidence intervals were estimated using a stratified Cox proportional hazards model, with the stratification factors used in randomization.

NR=not reached

Progression-free Survival: Non-gBRCAmut

	PFS	Hazard	% of P with Progre or D	
Treatment	Median (95% CI) (Months)	Ratio (95% CI) p-value	12 mo	18 mo
Niraparib (N=234)	9.3 (7.2, 11.2)	0.45 (0.338,	41%	30%
Placebo (N=116)	3.9 (3.7, 5.5)	0.607) p<0.0001	14%	12%

PFS was analyzed using a 2-sided log-rank test using randomization stratification factors, and summarized using the Kaplan-Meier methodology. Hazard ratios with 2-sided 95% confidence intervals were estimated using a stratified Cox proportional hazards model, with the stratification factors used in randomization.

Progression-free Survival: Non-gBRCAmut HRDpos

	PFS Median	Hazard Ratio		nout ession
Treatment	(95% CI) (Months)	(95% CI) p-value	12 mo	18 mo
Niraparib (N=106)	12.9 (8.1, 15.9)	0.38 (0.243,	51%	37%
Placebo (N=56)	3.8 (3.5, 5.7)	0.586) p<0.0001	13%	9%

PFS was analyzed using a 2-sided log-rank test using randomization stratification factors, and summarized using the Kaplan-Meier methodology. Hazard ratios with 2-sided 95% confidence intervals were estimated using a stratified Cox proportional hazards model, with the stratification factors used in randomization.

PARP Inhibitors in Monotherapy in Advanced Ovarian Cancer: Study 10 and ARIEL2 (Rucaparib)

Safety Population (n = 377)

Criteria

- Diagnosis of ovarian cancer (inclusive of primary peritoneal and fallopian tube cancer)
- Enrolled at 600-mg twice daily dosing level and received ≥ 1 dose of rucaparib 600 mg

Efficacy Population (n = 106)

Criteria

- Received ≥ 2 prior chemotherapies, including ≥ 2 platinum-based regimens
- Had a deleterious gBRCA or somatic BRCA mutation
- Enrolled at 600-mg twice daily dosing level and received ≥ 1 dose of rucaparib 600 mg

Efficacy Analysis Endpoints:

- Primary outcome: investigator-assessed ORR per RECIST v. 1.1
- Secondary efficacy analyses:
 - ✓ DOR
 - ✓ PFS

PARP Inhibitors in Monotherapy: ORR in the Efficacy Population

Oza AM, et al. Gynecol Oncol. 2017;147:267-275.

ARIEL3: STUDY DESIGN

Primary endpoint: Investigator-assessed PFS (per RECIST)

*CR (defined by RECIST v1.1) or PR (defined by RECIST v1.1 and/or a GCIG CA-125 response [CA-125 within normal range]) maintained until entry to ARIEL3 (≤8 weeks of last dose of chemotherapy). [†]ATM, ATR, ATRX, BARD1, BLM, BRIP1, CHEK1, CHEK2, FANCA, FANCC, FANCC, FANCE, FANCG, FANCI, FANCI, FANCM, MRE11A, NBN, PALB2, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD52, RAD54L, RPA1. HRR, homologous recombination repair; NGS, next-generation sequencing.

ARIEL3: Investigator-Assessed Progression-Free Survival

Visit cutoff date: 15 April 2017.

HRD causes genome-wide loss of heterozygosity (LOH) that can be measured by comprehensive genomic profiling based on NGS

- profiling assay sequences BRCA1/2 genes in tumor-derived DNA The assay also sequences single-nucleotide polymorphisms (SNPs)
- SNP analysis identifies and quantifies genomic LOH

ARIEL3 Exploratory Analysis: Investigator-Assessed Progression-Free Survival in Patients with BRCA Wild-Type OC

Visit cutoff date: 15 April 2017.

Comparing the toxicity of PARP inhibitors

Adverse events of special interest – MDS/AML

Study 19 – 3 cases in 265 patients

- Two in the olaparib arm
- One in the placebo arm

NOVA – 7 cases in 367 patients

- Five in the niraparib arm
- · Two in the placebo arm

ARIEL3 – 3 cases in 564 patients

- Three in the rucaparib arm
- Zero in the placebo arm

GI toxicities are common with all PARP inhibitors (% pts)

Toxicities	Grade of Tox	Olaparib ¹	Rucaparib ²	Niraparib ³
Nausea	All Grades	64	77	73.6
>	Grade 3 and 4	3	5	3.0
Constipation	All	20.65	40	39.8
	Grades 3 and 4	0	2	0.5
Vomiting	All	43	46	34.3
	Grades 3 and 4	4	4	1.9
Decreased	All	22	39	25.3
appetite	Grades 3 and 4	1	3	0.3
Abdominal pain	All	43	32	22.6
	Grades 3 and 4	8	3	1.1
Diarrhea	All	31	34	19.1
	Grades 3 and 4	1	2	0.3
Dyspepsia	All	25	104	11.4
	Grades 3 and 4	0	<1%	0
Dysgeusia	All	215	39	10.1
tesy of Ursula	Grades 3 and 4	0	0.3	0

¹FDA insert, ²FDA insert, ³NOVA NEJM 2016, ⁴Swisher Lancet Onc 2016, ⁵Ledermann Lancet Oncology 2014

Hematologic toxicities

(% of pts)

Toxicities	Grade of Tox	Olaparib ¹	Rucaparib ²	Niraparib ³
Decrease in	All Grades	90	67	50.1
hemoglobin	Grade 3 and 4	15	23	25.3
Decrease in	All	30	39	61.3
platelets	Grades 3 and 4	3	6	33.8
Decrease in	All	25	35	30.2
neutrophil count	Grades 3 and 4	7	10	19.6

Slide courtesy of Ursula

Matulonis MD

1FDA package insert, 2FDA package insert, 3NOVA NEJM 2016

22

Additional toxicities that appear to differ between agents

(% of pts)

Toxicities	Grade of Tox	Olaparib ¹	Rucaparib ²	Niraparib ³
Increased	All	30	92%	NR
Creatinine	Grades 3 and 4	2	1	NR
Elevated ALT	All	NR	74%	NR
	Grades 3 and 4	NR	13%	NR
Elevated AST	All	NR	73%	NR
	Grades 3 and 4	NR	5%	NR
Hypertension	All	NR	NR	19.3%
	Grades 3 and 4	NR	NR	8.2%
Nasopharyngitis/U	All	26	10 ⁴	11.2
RI	Grades 3 and 4	0	04	0
Dypsnea	All	NR	21	19.3
	Grades 3 and 4	NR	0.5	1.1
Palpitations	All	NR	NR	10.4
	Grades 3 and 4	NR	NR	0

Slide courtesy of Ursula Matulonis MD

¹FDA insert, ²FDA insert, ³NOVA NEJM 2016, ⁴Swisher Lancet Onc 2016 ⁵Ledermann Lancet Oncology 2014

Dose Modifications

	Olaparib (%) Placebo (%)	Niraparib (%)	Placebo (%)	Rucaparib (%)	Placebo (%)
Interruption rate	45	18	69	5.0	64	10
Dose reduction rate	25	3	66	14.5	55	4
Discontinuation rate	11	2	15	2.2	13	2
Anaemia*			1.4	0		
Neutropenia*			1.9	0		
Thrombocytopenia*			3.3	0.6		

^{*}Cause of discontinuation not reported specifically for rucaparib or olaparib

Pujade-Lauraine E, et al. Lancet Oncol. 2017;18(9):1274-1284. Mirza MR, et al. N Engl J Med. 2016;375(22):2154-2164. Coleman RL, et al. Lancet. 2017 Sep 12. [Epub ahead of print].

SIDE EFFECT MANAGEMENT

- Most severe toxicity within first 3 cycles
 - Non-haematological symptoms often subsequently abate
- Management of AE common to all PARPi:
 - Symptomatic management
 - Fatigue rest
 - Nausea, vomiting regular antiemetics, take tablets with food
 - Bowel disturbance laxatives or anti-diarrhea meds, dietary
 - Anaemia blood transfusion, dietary
 - Dose interruption
 - If cumulative toxicity not responding adequately to supportive meds
 - Rechallenge at same dose
 - Dose reduction
 - If on rechallenge, further intolerable toxicity
- Management of PARPi-specific AE:
 - Rucaparib-related increase in transaminases usually transient and resolves on maintained dose
 - Niraparib-related hypertension be aware and monitor, treat as required
 - Niraparib-related myelosuppression thrombocytopenia risk most marked in first month

TREATMENT MONITORING

In general:

- Baseline bloods, fortnightly for 2 months, every 4 weeks for 3-4 months extending to every 2 months, if stable
- Baseline CT TAP, around 3 months for first assessment, then ad hoc if Ca125 remains controlled
- Niraparib is different during cycle 1, requiring weekly bloods to monitor platelets
- Indicators for dose reduction in clinical practice:
 - Most commonly anaemia or multifactorial abnormal lab results
 - Fatigue, nausea, bowel disturbance (if drug) tend to settle with time or symptomatic management; rarely lead to dose reduction
 - Raised transaminases (rucaparib), creatinine changes (rucaparib and olaparib) and hypertension (niraparib) rarely need dose reduction
- Long-term considerations:
 - Myelodysplasia, haematological malignancy
 - Evidence so far is that risks in treatment vs placebo arms are no different for all three PARPi

- A retrospective exploratory multivariate analysis of the ENGOT-OV16 / NOVA trial identified a subset of patients who will require rapid dose modifications
- Body weight and baseline platelet counts were identified as the two most significant predictors of early dose modification
- · No other factors appeared to be significant predictors of early dose modification

Weight at baseline is a predictive factor

Weight groups were defined by quartiles with 25% of patients being <58 kg and 25% of patients having a weight at baseline of ≥77 kg

Baseline thrombocyte count is a second predictive factor

Groups were defined by quartiles, indicating that patients with lowest thrombocyte count at baseline have the highest risk to develop thrombocytopenia during Cycle 1

Resistence to PARP inhibitors

Mechanisms of Resistance to PARP Inhibitors

Resistance mechanism	PARPi sensitive	PARPi resistant
Genetic reversion of truncating mutation in	BRCA1-truncated	BRCA1-reverlant
BRCA1 or BRCA2 gene	HR:	HR (BBBB)
Hypomorphic BRCA1	BRCAT-C81G	BRCA1-C61G
or BRCA2 activity	HR:	HR: WEB
	3'53BP1 5'	3'5'
DDR rewlring	5 3 HR:	5 3'
	**	* *** *
Drug transport by P-gp		=03
	© 2013 Ame	rican Association for Cancer Flese

Mechanisms of PARPi resistance

Primary/Acquired PARP inhibitor resistance Intrinsic resistance

- DNA repair defect reversion
 - Mutation reversion BRCA1, RAD51C/D
 - Methylation reversion BRCA1, RAD51C
 - DNA repair pathway reversion NHEJ loss
 - Structural reversion BRCA1 5095C>T R1699 destabilizes the BRCT fold
- Oncogene-driven
 - CCNE1/CYCLIN E over-expression

Extrinsic resistance

- Neo-angiogenesis
- Stromal reversion
- Immune reversion
 - Immune "switch", improve cytotoxic T: Treg ratio

Mutation "reversion": secondary mutations

Secondary mutations were found in cell lines and tumor samples in *BRCA1* or *BRCA2*Rare event at diagnosis of OC, only found with prior treatment for breast cancer
Platinum or PARPi pressure: drives genomic instability post-treatment

Multiple secondary mutations indicate tumour heterogeneity?

Stromal impact on PARPi response

Stromal factors: CTGF antagonism enhances chemotherapy response

Neesse A, Proc Natl Acad Sci USA 2013;

Mesenchymal C1 Immunoreactive C2 Differentiated C4 Proliferative C5

Tothill C1 stromal/desmoplastic/mesenchymal type "High levels of reactive tumor stroma"

AOCS-139

Stroma: The cause of a "C1 switch"

Anti-immunogenic

"C2" immune high Good prognosis

"C1" stromal Poor prognosis

Stromal impact on PARPi response

THE FUTURE OF PARP INHIBITOR

Antiangiogenesis and PARP Inhibition: Rationale

- Chronic hypoxia induces downregulation of BRCA1 and RAD51, and decreases homologous recombination in cancer cells
- Anti-VEGF induces hypoxia in the tumor microenvironment, which contributes to genomic instability and increased sensitivity of cells to PARP inhibition

Cediranib/Olaparib Significantly Increased PFS Compared to Olaparib Alone in Platinum-Sensitive Recurrent Ovarian Cancer

Liu J, et al. Lancet Oncol. 2014;15(11):1207-1214.

Olaparib in first line: PAOLA 1 study design

WHAT ABOUT RECHALLENGE?

OReO Study: Olaparib Retreatment in Platinum-Sensitive Ovarian Cancer

Rationale for PARPi With Immune Checkpoint Inhibitors

- Hypermutable states
 - BRCA-mutant (somatic/germline) have high intrinsic LOH
 - High-grade serous ovarian cancer has a hypermutable genotype in a proportion of patients
 - PARPi can induce a hypermutable state
- All increase potential for neoantigens potentially amenable to PD-1/L1 targeting
- PARPi synergy may vary by PARPi and checkpoint inhibitor

PARPi Therapy <u>+immune checkpoint inhibitors</u> in Recurrent OC

Treatment	Study	Condition	Primary Outcome
Niraparib + pembrolizumab	NCT02657889	Adv TNBC or recurrent EOC	DLT RR
Durvalumab + cediranib or olaparib	NCT02484404	Adv solid tumors or recurrent EOC	Recommended dose ORR
Olaparib + tremelimumab	NCT02571725	Recurrent BRCAm EOC	Recommended dose, ORR
Tremelimumab ± olaparib	NCT02485990	Recurrent/ persistent EOC	Safety

Conclusions

PARP Inibitors are a great opportunity for our patients

 The information about BRCA mutation is very important for the patients and their family

We have many things to learn about the Parp Inhibitors...