

Sono utili i test genomici per la valutazione della prognosi?

Alessandra Fabi

ISTITUTI DI RICOVERO E CURA A CARATTERE SCIENTIFICO

Disclosures

Scientific advisory board, meeting, congress:

Celgene,
Lilly,
Novartis,
Roche,
Pfizer,
Astra Zeneca

My Outline

- * How to show the relationship between Genomic Test and Prognosis?
- * From predictive test to prognostic test: is it possible?
- * Point on locally advanced disease and prognosis by genomic test
- * Metastatic disease and genomic: towards a response through biomarkers

A. Fabi

My Outline

- * How to show the relationship between Genomic Test and Prognosis?
- * From predictive test to prognostic test: is it possible?
- * Point on locally advanced disease and prognosis by genomic test
- ***** Metastatic disease and genomic: towards a response through biomarkers

A. Fabi

Prognostic Versus Predictive Value

Prognostic Test/Biomarker

A prognostic test/biomarker provides information on a cancer outcome

(disease recurrence, disease progression, death for cancer)

Ballman. J Clin Oncol. 2015

Adjuvant Treatment Decisions Are Driven by Both Prognostic and Predictive Factors

Prognostic factors: information on outcomes (eg, recurrence rate)

Predictive factors: degree of response to a specific therapy

- Age
- Nodal status
- Tumor size
- Tumor Grade
- HER2
- ER/PR

- ER
- HER2

What do we have over?

BRS Test <u>Predicts</u> Those Patients Who Do and Do Not Derive Benefit From Chemotherapy

NSABP B-20: Validation Study for <u>Prediction</u> in Node-Negative Patient Population

Rationale for Investigating Chemotherapy Benefit in Intermediate Oncotype DX Breast RS

Paik et al. J Clin Oncol. 2006.

The RS is a continuous predictor of the Risk of Distant Recurrence NSABP-14 CLINICAL VALIDATION

668 pts (stage I-II, N-, ER+ treated with 5 yrs of TAM)

Recurrence Score as Continuous Predictor

Paik S, NEJM 351(27):2817, 2004

Recurrence Score group was significantly prognostic BC specific mortality

38.568 pts

Petkov et al, npj Breast 2016

Recurrence Score group was significantly prognostic BC specific mortality

38,568 pts

20%

15%

10%

>5-10 mm >10-20 mm >20-40 mm >40 mm

423 243 23

>5-10 mm >10-20 mm >20-40 mm

20%

15%

10%

Size

Tumor

Petkov et al, npj Breast 2016

3198 pts

3-year DFS was **92%** (95% CI, 89.0% to 94.8%) in patients with <u>high RS</u> versus **98%** (95% CI, 96.8% to 98.8%) in pts with <u>intermediate RS</u> and **97%** in patients with <u>RS < 11</u> (95% CI, 95.6% to 99.1%; p .001

3-year DFS was **95%** within the $\underline{RS} > 25$ group (95% CI, 91.4% to 98.4%) versus **97.5%** (95% CI, 95.9% to 99.0%) within \underline{RS} 12 to 25 group and **98%** (95% CI, 97.0% to 99.8%) within the $\underline{RS} < 11$ group (P = .05 for RS > 25 v others

PAM50 signature and long-term breast cancer survival

Distribution of PAM50 subtypes by clinical characteristics (15 yrs follow up)

		45%	23%	18%	11%	3%	
		Luminal A %	Luminal B %	Basal-like %	Her2%	Normal %	P
	N	564	284	225	139	41	
Cancer stage							< 0.0001
I	453	55.6	17.7	15.9	8.2	2.6	
IIA	432	42.4	22.9	20.1	11.1	3.5	
IIB	144	34.7	26.4	20.1	15.3	3.5	
IIIA	166	37.4	31.3	13.3	13.9	4.2	
IIIC	58	29.3	25.9	25.9	15.5	3.5	
Tumor grade							< 0.0001
Well-differentiated	159	80.5	12	2.5	1.3	3.8	
Moderately-diff	496	57.3	26.6	4.8	7.9	3.4	
Poorly diff	497	17.9	23.9	37.4	18.1	2.6	
Unspecified	101	62.4	13.9	10.9	7.9	5	
Mean age at diagnosis (SE)		52.8 (0.4)	50.8 (0.5)	48.2 (0.6)	50.5 (0.8)	49.6 (1.2)	< 0.0001
Menopausal status at diagnosis							0.02
Pre-menopausal		40.3	25	19.9	10.9	3.9	
Post-menopausal		49.7	20.3	16.3	11.3	2.7	

ER+/Her2-= ER+ tumors

ER+/Her2+ split across Her2enriched (34%) Luminal A (29%) Luminal B (31%)

Pu et al Br Cancer Res Treat 2019

Pam50 intrinsic
subtype is
independently
prognostic for longterm breast cancer
survival, irrespective
of menopausal status

Pu et al Br Cancer Res Treat2019

Node-Positive Disease: RxPONDER Trial Schema

Lymph Node Status Does Not Predict Tumor Biology (2004-2017), N=610.350

- With classic low risk cutoff RS 0-17, 64% N1mi and 62% of N1 patients can be spared chemotherapy
- If RxPONDER shows no chemotherapy benefit with RS ≤25, 87% N1mi and 85% N1 patients can be spared chemotherapy

Node-Positive (N1mi/1-3 LN+)

	Study	Type of Study	N	Study Design	Endpoints
	transATAC	Prospective— retrospective; validation	306 (all N+)	ANA vs TAM vs ANA+TAM	9-year proportion DR-free
	SWOG 8814	Prospective— retrospective; validation	367 (all N+)	TAM vs CAF→T vs CAFT	10-year DFS in TAM-alone arm
Level IA Evidence	WSG PlanB	Prospective outcomes	930 (1-3 N+)	RS < 12: ET RS 12-25: ET vs CT RS ≥ 26: CT	5-year DFS 5-year DDFS
	Clalit	Prospective outcomes	709 (all N+)	Population-based registry	5-year DR 5-year BCSD
	SEER	Prospective outcomes	6,483 (N1mi/1-3 N+)	Population-based registry	5-year BCSM

Good Outcomes in Patients With Low-Risk RS Results Without Chemotherapy

Mamounas et al. npj Breast Cancer. 2016.; Nitz et al. Breast Cancer Res Treat. 2017.; Stemmer npj Breast Cancer. 2017.; Roberts et al. Breast Cancer Res Treat. 2017.

TransATAC

A low Recurrence Score result (<18) indicates a low risk of recurrence for patients with 1-3 positive nodes

1-3 Positive nodes

n = 243

Node-negative

n = 872

RS Result Risk-Stratifies Node-Positive Patients Using Hormone Therapy Alone

Dowsett et al. J Clin Oncol. 2010.

West German Study Group PlanB Trial: High-Risk No and N1 Patients With RS 0-11 Do Equally Well With ET Alone

5-year disease-free survival was 94% in high-risk N0 and N1 patients with Recurrence Score results 0-11 and treated with hormone therapy alone

Nitz et al. Breast Cancer Res Treat. 2017

My Outline

- * How to show the relationship between Genomic Test and Prognosis?
- * From predictive test to prognostic test: is it possible?
- * Point on locally advanced disease and prognosis by genomic test
- ***** Metastatic disease and genomic: towards a response through biomarkers

A. Fabi

*For Recurrence Scores >50, group average rate of distant recurrence and 95% CI shown

TAILORX ET Alone Was Not Inferior to CT/ET in RS 11-25

836 iDFS events after median follow-up of 7.5 years

TAILORx Very Low Risk of Distant Recurrence in RS 11-25

199 of 836 (23.8%) were distant recurrences

Sparano et al. N Engl J Med. 2018.

TAILORx

Arms A, B & C With RS 0-25 Have ≤5% Risk of Distant Recurrence at 9 Years

9-Year Event Rates – ITT Population: All Arms

Sparano et al. N Engl J Med. 2018.

TAILORx and the Age

Recurrence Score result, but was not statistically significant

Sparano et al. N Engl J Med. 2018.

ET: endocrine therapy

Effect of Age and Menopausal Status on Chemotherapy Benefit

RS 16-25

Sparano et al, NEJM 2019

My Outline

- * How to show the relationship between Genomic Test and Prognosis?
- * From predictive test to prognostic test: is it possible?
- * Point on locally advanced disease and prognosis by genomic test
- ***** Metastatic disease and genomic: towards a response through biomarkers

A. Fabi

What about prognostic value of Genomic Testing in Neoadjuvant Setting?

pCR and RS

RS was the only significant predictor of pCR

Pivot et al. Oncologist. 2015.

Neoadjuvant Studies Supporting Chemotherapy Benefit with RS Group 26-100

Neoadjuvant Chemotherapy

			pCR Rate		
Study	Type of Study	N	RS 0-25	RS 26-100	
Gianni et al.	Neoadjuvant CT	89	0%	12%	
Zelnak et al.	NACT vs NAHT	46	0%	22%	
Yardley et al.	Neoadjuvant CT	108	0%	26%	
Bear et al.	NACT vs NAHT	64	0%	14%	

Sparano et al. J Clin Oncol. 2008; Gianni L, et al. J Clin Oncol. 2005; Chang JC, et al. Breast Cancer Res Treat. 2008; Zelnak AB, et al. J Clin Oncol. 2013; Yardley DA, et al. Breast Cancer Res Treat. 2015; Bear HD, et al. J Surg Oncol. 2017

My Outline

- * How to show the relationship between Genomic Test and Prognosis?
- * From predictive test to prognostic test: is it possible?
- * Point on locally advanced disease and prognosis by genomic test
- ***** Metastatic disease and genomic: towards a response through biomarkers

A. Fabi

PIK3CA mt BCs & prognosis in early stage disease n=10,319

PIK3CA mutants had better outcomes than WT HR = 0.77 [95%CI: 0.71 - 0.84], p < 0.001, independent of subtype and location

Pooled analysis of 10,319 patients from 19 studies, Median OS FU 7yrs.

Zardavas et al, submitted

LiquERB: the GIM21 project when prediction become prognosis

LiqBreastTrack trial: preliminary results (II)

VAF (blood)

Detection of de novo arising mutations pt#2 Progression Progression by CT by ctDNA age 59 PIK3CA p.H1047R Lead time: 0,6% 2.8 months 0.4% 6 7 8 9 10 11 12 **Blood drawings**

ctDNA present at time 0, and slowly going up

ctDNA **NOT** present at time 0, but de novo appearing some time after the beginning of treatment

ultra-fast clearance

intersecting ctDNA trajectories

resistance (primary)

resistance (acquired/adaptive)

sensitivity (best responders)

sensitivity & resistance (bi-clonal ear-marking)

THANK YOU for Your Attention

