

12.35 SESSIONE 8 IMMUNOTERAPIA NEI TUMORI TRIPLO- NEGATIVI

Biomarkers predittivi nel carcinoma mammario metastatico

Rita De Sanctis, MD, PhD Humanitas University Istituto Clinico Humanitas, IRCCS

Disclosure information

Advisory board: Kyowa Kirin

Editorial board: Novartis

Consultant: EISAI

IMpassion130

Phase III study IMpassion130

- Pre-specified hierarchical testing of OS in ITT and, if significant, in PD-L1 IC+ patients
- In both treatment arms, 41% of patients were PD-L1 IC+

IMpassion130: primary PFS analysis

Primary PFS Analysis in the ITT and PD-L1 IC+ Subgroup

- PFS benefit driven by PD-L1 IC+ patients, as a treatment effect was not observed in PD-L1 IC+ patients¹
- Based on these data,² atezolizumab + nab-paclitaxel received accelerated approval by the FDA³ and is recommended for patients with PD-L1 IC+ mTNBC in the NCCN⁴ and AGO⁵ guidelines

IMpassion130: second interim OS analysis

OS in ITT Population

OS in PD-L1+ Population

PD-L1 testing in breast cancer

Breast Cancer

Programmed Cell Death Ligand 1 in Breast Cancer: Technical Aspects, Prognostic Implications, and Predictive Value

IMpassion130: biomarkers of clinical benefit

Expression of PD-L1 on tumor-infiltrating immune cells (IC) was predictive of benefit with atezolizumab plus *nab*-paclitaxel

- PD-L1 expression on IC was evaluated using the VENTANA PD-L1 SP142 IHC assay with a ≥ 1% cutoff
- The SP142 assay has been clinically validated and FDA-approved to identify patients with mTNBC for treatment with atezolizumab+ nab-paclitaxel
- Dako 22C3 and VENTANA SP263 are 2 other commercially available PD-L1 IHC assays approved for non-TNBC indications

PDL1 staining: five assays

Performance of PD-L1 immunohistochemistry assays in unresectable locally advanced or metastatic triple-negative breast cancer: post hoc analysis of IMpassion130

Hope S. Rugo,¹ Sherene Loi,² Sylvia Adams,³ Peter Schmid,⁴ Andreas Schneeweiss,⁵ Carlos H. Barrios,⁶ Hiroji Iwata,⁷ Véronique Diéras,⁸ Eric P. Winer,⁹ Mark M. Kockx,¹⁰ Dieter Peeters,¹⁰ Stephen Y. Chui,¹¹ Jennifer C. Lin,¹¹ Anh Nguyen Duc,¹¹ Giuseppe Viale,¹² Luciana Molinero,¹¹ Leisha A. Emens¹³

¹University of California San Francisco Comprehensive Cancer Center, San Francisco, CA, USA; ²Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; ³NYU Langone Medical Center, New York, NY, USA; ⁴Barts Cancer Institute, Queen Mary University London, London, UK; ⁵University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany; ⁶Centro de Pesquisa Clinica, HSL, PUCRS, Porto Alegre, Brazil; ⁷Aichi Cancer Center Hospital, Nagoya, Japan; ⁹Department of Medical Oncology, Centre Eugène Marquis, Rennes, France; ⁹Dana-Farber Cancer Institute, Boston, MA, USA; ¹⁰HistoGeneX NV, Antwerp, Belgium; ¹¹Genentech, Inc., South San Francisco, CA, USA; ¹²University of Milan, European Institute of Oncology IRCCS, Milan, Italy; ¹³University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA

esmo.org

Post hoc exploratory biomarker sub-study

Clinical activity was observed in the SP142 PD-L1 IC+ subgroup, regardless
of whether the sample was from the primary tumour or metastatic tissue

PD-L1 IHCs: prevalence and analytical concordance

The analytical concordance was $< 90\% \rightarrow$ assays not equivalent:

• 22C3 (CPS \geq 1) and SP263 (IC \geq 1%) PD-L1 assays identified a larger patient population of which SP142+ (IC \geq 1%) is a subgroup

PD-L1 IHCs: clinical benefit

The clinical benefit in 22C3+ and SP263+ subgroups was driven by the SP142+ subgroup

-The SP142 assay identified patients with the smallest HR point estimates and longest median PFS and OS from atezolizumab + nab-paclitaxel

PD-L1 IHCs: clinical benefit

The SP142 assay at IC >1% cutoff is the approved diagnostic test used to identify patients with mTNBC most likely to benefit from the addition of atezolizumab to *nab*-paclitaxel

...and tumor-infiltrating CD8+ T cells?

- Within the 22C3+ or SP263+ subgroups, SP142+ patients had numerically higher sTIL counts compared with SP142- patients
- TILs were predictive of ICI efficacy only in PD-L1-positive tumors

Heterogeneity of TILs populations

Tumor

Periphery (blood, lymph node)

★ Potential cellular targets of immunotherapy

IR, inhibitory receptors; TCF, critical transcription factor

Peripheral Inflammatory Biomarkers

Neutrophil-to-lymphocyte ratio

Monocyte-to-lymphocyte ratio

Platelet-to-lymphocyte ratio

Baseline and early changes in NLR, MLR, and PLR values were strongly associated with clinical outcomes in patients who received IO-based treatment regimens on phase 1 trials.

Confirmation in a homogenous patient population treated on late-stage trials or outside of trial settings is warranted.

Tumor mutational burden and potential neoepitopes

TMB and overall survival after immunotherapy

TMB cutoff

	No. of patients		Cutoff	P-value
All samples in cohort	1,662	 −	-	1.59×10^{-4}
Cancer type		JW C		
Bladder	214	F	17.6	0.040
Breast	45		5,9	0.605
ER+	24	 -	6.8	0.287
ER-	21	⊢ •	4.4	0.731
Unknown primary	90		14.2	0.155
Colorectal	110		52.2	0.031
Esophagogastric	126	⊢ ■ →	8.8	0.221
Glioma	117		5.9	0.465
Head and neck	138	⊢	10.3	7.42 × 10 ⁻³
Melanoma	321	⊢ •→	30.7	0.067
Non-small cell lung	350	├ ─ 	13.8	2.30 × 10
Renal cell carcinoma	151	├	5.9	0.569
Drug class				
Combo	260	II	2	0.018
CTLA4	146	─ -	*	1.89×10^{-1}
PD-1/PDL-1	1,256	 	_, :	6.95 × 10 ⁻⁴
		0.12 0.25 0.50 1.0 2.0	4.0	
	< Better c	werall survival — HR — Worse	o overall survival>	

Multiomics Prediction of Response Rates to ICIs

- Tumors containing comparably high mutational burden may exhibit variable responses, suggesting that additional factors may contribute to anti-PD-1/PD-L1 response
- Whole-exome and RNA sequencing of 7,187 patients from the publicly available Cancer Genome Atlas and the objective response rate (ORR) data of 21 cancer types obtained from a collection of clinical trials were analyzed
- Thirty-six variables of 3 distinct classes:
- (1) tumor neoantigens,
- (2) tumor microenvironment&inflammation,
- (3) checkpoint targets.

Multiomics Prediction of Response Rates to ICIs

Among 36 variables, estimated CD8+ T-cell abundance was the most predictive of the response to anti-PD-1/PD-L1 therapy across cancer types (Spearman R = 0.72; p < 2.3 × 10-4), followed by the tumor mutational burden (Spearman R = 0.68; p < 6.2 × 10-4), and the fraction of samples with high PD1 gene expression (Spearman R = 0.68; p < 6.9 × 10-4).

Machine learning: radiomic signature of CD8 cells

- Retrospective multicohort study of advanced solid tumors
- Aim: to develop a radiomic signature predictive of immunotherapy response by combining CT images and RNA seq data from tumor biopsies to estimate CD8 abundance
- Homogeneous and hypodense tumors and peripheral rings were associated with a high CD8 cell score
- High baseline radiomic score → higher proportion of patients responding to immunotherapy and improved OS

Association Between pATB Therapy and Survival and Response to ICIs

Kaplan-Meier curves illustrating the association of prior broad-spectrum antibiotic (pATB) therapy administered up to 30 days prior to immunotherapy with adverse survival in the study population (n = 196).

Sex Hormones and Anticancer Immunity

Proposal for a precision immunotherapy trial strategy in mTNBC

Conclusions

- PDL1 is only part of the story!
- ➤ Multiple assays for PD-L1 (SP142, IC >1%)
- TILs
- ➤ NLR, MLR, and PLR?
- TMB
- CD8+ T cell abundance
- > Radiomic biomarkers
- Concomitant medications
- Hormonal factors
- Integration of "omics" and clinical data to fully describe tumor behavior

Keep in touch!

